首页|融合注意力机制与时序特征的异常驾驶行为识别算法

融合注意力机制与时序特征的异常驾驶行为识别算法

扫码查看
针对目前驾驶行为识别数据维度高、检测难度大,存在精度不高及稳定性较弱等问题,提出一种融合注意力机制与时序特征的异常驾驶行为识别算法.通过传感器采集驾驶人执行特定驾驶行为片段的过程数据并进行数据清洗,清洗后的数据进行模板化处理依次被规整为N×N×C和M×C以适应网络模型输入;构建融合注意力机制与时序特征的网络(ATFN)模型,完成对急加/减速、急左/右转弯、急左/右变道、正常驾驶等7种驾驶行为的分类识别.在公开数据集上与长短时记忆网络算法(LSTM)、融合注意力机制的长短记忆网络算法(ALSTM)、融合卷积的长短时记忆网络算法(CLSTM)进行了对比分析.试验结果表明:LSTM、ALSTM、CLSTM与本文ATFN算法平均准确率分别为92.94%、94.28%、90.98%、95.47%,ATFN模型精度最高,相比其他3种模型分别提升了2.53%、1.19%、4.49%;结合损失值、精确率和F1值等指标,ATFN模型整体性能最优.该算法效果良好且稳定性较高,满足实际检测精度需求,可为异常行为预警和驾驶风险评估提供技术支持.
Abnormal driving behavior recognition algorithm combining attention mechanism and timing features
Due to the high data dimension,difficulty in detection,low accuracy and weak stability of driving behavior recognition,an abnormal driving behavior recognition algorithm that integrates attention mechanism and timing features was proposed.The process data of drivers performing specific segments of driving behavior through sensors was collected and cleaned.The cleaned data was processed by template and then normalized into N×N×C and M×C to adapt to the input of network model.The ATFN model was constructed by integrating attention mechanism and timing features to complete the classification and recognition of seven driving behaviors,including sharp acceleration/deceleration,sharp left/right turn,sharp left/right lane change and normal driving.Compared with LSTM,ALSTM and CLSTM algorithms on the open data set.The results show that the average accuracy of LSTM,ALSTM,CLSTM and ATFN algorithm in this paper is 92.94%、94.28%、90.98%、95.47%,respectively,and the accuracy of ATFN model is the highest.Compared with the other three models,the increase is 2.53%、1.19%、4.49%respectively.Combined with loss value,recall rate and F1,ATFN model has the best overall performance.The algorithm in this paper has good effect and high stability,meets the requirement of actual detection accuracy,and can provide technical support for abnormal behavior warning and driving risk assessment.4 tabs,7 figs,29 refs.

traffic engineeringabnormal driving behavior recognitionATFN modeltiming fea-tureattention mechanism

程鑫、周经美、刘霈源、牛亚妮、张晓静、王孜健

展开 >

长安大学信息工程学院,陕西西安 710018

公安部交通管理科学研究所,江苏无锡 214151

长安大学电子与控制工程学院,陕西西安 710018

山东高速集团有限公司创新研究院,山东济南 250002

展开 >

交通工程 异常驾驶行为识别 ATFN模型 时序特征 注意力机制

2024

长安大学学报(自然科学版)
长安大学

长安大学学报(自然科学版)

CSTPCD北大核心
影响因子:1.011
ISSN:1671-8879
年,卷(期):2024.44(6)