首页|改进GM(1,1)-ARIMA-LR模型天然气产量预测研究

改进GM(1,1)-ARIMA-LR模型天然气产量预测研究

扫码查看
为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型.该模型以平均误差百分比为评价指标,依据预测步长变化和过去预测误差对单个模型分别进行动态调整,再建立目标规划模型对各模型进行动态加权.实证结果表明,改进GM(1,1)-ARIMA-LR模型能够更好地提取时间序列的长短时依赖关系,与其它的主流模型相比,其预测精度更高.对近5年的天然气产量进行一步、五步与八步预测,GM(1,1)-ARIMA-LR集成模型预测误差分别为1.187%、3.129%、9.855%.本文运用该模型对2023-2030年中国天然气产量进行预测.
Improved GM(1,1)-ARIMA-LR Model for Natural Gas Production Prediction
The study aims to improve the prediction accuracy of natural gas production with small sample.On the basis of the idea of learning from the past prediction errors and with adaptive learning factors and combined learning factors added,an integrated prediction model including GM(1,1),ARIMA and LR is constructed.The model takes the average error percentage as the evaluation index,dynamically adjusts the single model according to the change of prediction step size and the past prediction errors,and then establishes the objective programming model to dynamically weight each model.The empirical results show that the modified GM(1,1)-ARIMA-LR model can better extract the long-short dependence relationship of time series,achieving higher prediction accuracy compared to other typical models.One-,five-and eight-step predictions of the natural gas production over the last five years were made by the GM(1,1)-ARIMA-LR integrated model,with the errors being 1.187%,3.129%and 9.855%,respectively.And furthermore by the model,China's natural gas production from 2023 to 2030 was predicted.

natural gas productionARIMA modelrrey GM(1,1)modellinear regressionmultistep prediction

林文辉、杜彦炜、赵鹏

展开 >

西安工业大学机电工程学院,西安 710021

西安工业大学新生院,西安 710021

天然气产量 ARIMA模型 灰色GM(1,1)模型 线性回归 多步预测

西安市未央区科技计划项目榆林市科技计划项目

202021CXY-2020-091

2024

西安工业大学学报
西安工业大学

西安工业大学学报

CSTPCDCHSSCD
影响因子:0.381
ISSN:1673-9965
年,卷(期):2024.44(1)
  • 18