首页|改进YOLOv8的道路小目标检测算法

改进YOLOv8的道路小目标检测算法

扫码查看
为了解决原YOLOv8在交通道路场景中易出现小目标的误检和漏检的问题,提出了一种改进YOLOv8网络模型的检测方法.首先,使用下采样机制(ADown)替代主干中的传统卷积,扩大模型的感受野.其次,引入CBAM注意力机制,降低了小目标的漏检率.最后,添加一个检测头,提升小目标的检测精度.实验表明,改进算法在KITTI数据集上的召回率R、mAP@0.5和mAP@0.95分别提升0.1%、1.7%和3.1%,同时参数量下降11%,对于小目标检测效果的各项指标均有提升,证明了改进算法在道路小目标检测的有效性.
Small Road Object Detection Algorithm based on Improved YOLOv8
In order to solve the problem that the original YOLOv8 is prone to false detection and missing detection of small objects in traffic road scenes,the paper presents a detection method based on the improved YOLOv8 network model.Firstly,the downsampling mechanism(ADown)is used to replace the traditional convolution in the trunk to expand the receptive field of the model.Secondly,the CBAM attention mechanism was introduced to reduce the missing detection rate of small objects.Finally,a detection head is added to improve the detection accuracy for small targets.Experiments show that the recall R,mAP@0.5 and mAP@0.95 of the improved algorithm on the KITTI dataset are increased by 0.1%,1.7%and 3.1%,respectively,while the number of parameters decreases by 11%,and that the indicators for the detection effect of small targets are all improved.These results prove that the improved algorithm is effective in the detection of small road objects.

YOLOv8small object detectiondownsampling mechanismattention mechanism

梁超、来跃深、常宏

展开 >

西安工业大学机电工程学院,西安 710021

西安北辰亿科电子科技有限公司,西安 710399

YOLOv8 小目标检测 下采样机制 注意力机制

2024

西安工业大学学报
西安工业大学

西安工业大学学报

CSTPCDCHSSCD
影响因子:0.381
ISSN:1673-9965
年,卷(期):2024.44(4)