首页|EFH-PCR:基于特征直方图与异常点快速去除的点云配准算法

EFH-PCR:基于特征直方图与异常点快速去除的点云配准算法

扫码查看
为了提高点云配准的精度和效率,特别是相邻视角点云配准中受噪声影响较大、特征提取与匹配效率低和点云冗余等问题,提出了 一种新的高效特征直方图点云配准(EFH-PCR)算法.EFH-PCR算法通过体素网格降采样来减少点云数量,应用3D-Harris算法提取关键点.随后,构建了一个基于特征分布直方图的目标函数,用于特征匹配和鲁棒性约束.这一目标函数用于确定点云之间的对应特征点对,优化点云的配准效果.最后,通过全局优化算法求解该目标函数,利用ICP算法对结果进行局部优化.实验结果表明,所提算法在多视角点云数据的配准效果上优于Super 4PCS,重叠率提升了 12%,运算时间减少了约43%,显示了其在快速配准方面的优势.
Point Cloud Registration Algorithm based on Feature Histogram and Fast Anomaly Removal
To improve the accuracy and efficiency of point cloud registration,particularly for adjacent viewpoint point clouds that are heavily influenced by noise,have low feature extraction and matching efficiency,and suffer from point cloud redundancy,this paper presents a novel and efficient feature histogram point cloud registration algorithm(EFH-PCR).The EFH-PCR algorithm first reduces the number of points in the point cloud through voxel grid down-sampling,and then extracts key points by the 3D-Harris algorithm.Next,a target function based on feature distribution histograms is constructed for feature matching and robustness constraints.This target function is used to determine corresponding feature point pairs between point clouds and optimize the registration results.Finally,a global optimization algorithm is used to solve the target function,and its result is further optimized by the ICP algorithm.Experimental results show that the proposed algorithm outperforms Super 4PCS in terms of multi-view point cloud registration,with a 12%increase in overlap rate and a 43%reduction in computation time,demonstrating its advantages in fast registration.

3D point cloudpoint cloud registrationfast point feature histogramoutlier removalnearest point iteration algorithm

刘东强、王国珲

展开 >

西安工业大学光电工程学院,西安 710021

三维点云 点云配准 快速点特征直方图 离群点去除 最近点迭代算法

2024

西安工业大学学报
西安工业大学

西安工业大学学报

CSTPCDCHSSCD
影响因子:0.381
ISSN:1673-9965
年,卷(期):2024.44(6)