首页|CEEMDAN-iLSTM-Attention的姿态数据预测校正方法

CEEMDAN-iLSTM-Attention的姿态数据预测校正方法

扫码查看
为提高姿态传感器数据预测精度,设计了一种基于CEEMDAN-iLSTM-Attention的姿态数据预测校正方法.首先,使用CEEMDAN方法得到不同模态角度序列信息;其次,使用改进鲸鱼优化算法寻找LSTM-Attention最佳网络参数,建立对应各角度模态分量的多个iLSTM-Attention预测模型,将每个模态分量预测结果叠加后得到预测数据;随后,在上述预测值的基础上计算其与真实值的误差,使用iLSTM-Attention网络建立误差预测模型;最后,在数据预测模型输出基础上减去误差预测模型输出得到校正后的预测数据.实验表明,角度、加速度和角速度姿态数据预测校正之后的误差相较于无校正时的预测数据误差分别下降了 57.2%,39.2%,76.2%.
CEEMDAN-iLSTM-Attention based Method for Attitude Data Prediction and Correction
To improve the prediction accuracy of attitude sensor data,the paper presents a CEEMDAN-iLSTM-Attention based method for prediction and correction of attitude data.Firstly,the CEEMDAN method is used to obtain different mode angular sequence information.Secondly,an improved whale optimization algorithm is used to find the optimal network parameters of LSTM-Attention.Then,multiple iLSTM-Attention prediction models corresponding to each mode are established,and the prediction data is obtained by superimposing the prediction results of each mode component.Subsequently,the errors between the predicted values and the real values are calculated,and the error prediction model is established by using the iLSTM-Attention network.Finally,the corrected prediction data is obtained by subtracting the error prediction model output from the data prediction model output.The experiments show that the corrected prediction errors of angle,acceleration,and angular velocity drop by 57.2%,39.2%,and 76.2%,respectively,compared to the errors of the predicted data without correction.

attitude data predictionlong and short-term memory networksattention mechanismserror correction

李林、李腾、秦刚

展开 >

西安工业大学电子信息工程学院,西安 710021

姿态数据预测 长短期记忆网络 注意力机制 误差校正

2024

西安工业大学学报
西安工业大学

西安工业大学学报

CSTPCDCHSSCD
影响因子:0.381
ISSN:1673-9965
年,卷(期):2024.44(6)