首页|3D打印矩形粗糙通道内火箭煤油流动换热特性试验方法研究

3D打印矩形粗糙通道内火箭煤油流动换热特性试验方法研究

Experimental Research on Flow and Heat Transfer Characteristics of Rocket Kerosene in 3D Printed Rectangular Rough Channels

扫码查看
为探究3D打印再生冷却通道在液体火箭发动机推力室中的替代应用特性,研制了具有不同内表面粗糙度的正弦波纹结构3D打印304不锈钢矩形通道.内截面名义尺寸为2.0 mm× 2.0 mm,设计粗糙度分别为6.3、25.0、100.0 μm,实际粗糙度Ra分别为11.88、12.70、17.53μm,通过将高温电阻率法和像素法相结合获得了3D打印通道的实际内径和壁厚,修正了火箭煤油流动换热的内壁温和热流密度,建立了3 D打印粗糙通道内火箭煤油流动换热特性试验研究方法.试验参数如下:压力处于15~20 MPa范围、质量流速在12 450~24 900 kg·m-2·s-1之间、热流密度为5~15 M W·m-2、流体温度为-150 ℃.研究结果表明:火箭煤油流动换热特性受到热流密度、流体温度和质量流速的影响;流体温度处于50~135 ℃范围内,换热系数增加约25%~33%;热流密度处于5.0~15.0 MW·m-2范围内,换热系数增加了8.3%;质量流速为12 450~24 900 kg·m-2·s-1范围内,换热系数增加了60.2%.粗糙度增加对火箭煤油流动换热起到强化作用,粗糙度从11.88 μm增加到17.53 μm时,换热强化幅度超过20%以上.该研究可为3D打印通道在火箭发动机推力室中的替代应用提供参考.
To investigate the alternative application characteristics of 3D printed regenerative-cooling channels in the thrust chamber of liquid rocket engines,3D printed stainless steel 304 rectangular minichannels with sinusoidal wave internal surface structures and varying roughness levels are developed.These minichannels feature a cross-sectional dimension of 2.0 mm×2.0 mm,with specified roughness values of 6.3,25.0,and 100.0μm,while the measured actual roughness(Ra)values are 11.88,12.70,and 17.53 µm,respectively.By utilizing a combination of the high-temperature resistivity method and pixel method,the actual inner diameters and wall thicknesses of three types of 3D printed channels are acquired.This process corrects the internal wall temperature and heat flux density associated with the flow of rocket kerosene.Subsequently,an experimental research method is developed to investigate the heat transfer characteristics of rocket kerosene within 3D printed rough channels.Experimental parameters include a pressure range of 15-20 MPa,mass flow rates between 12 450 and 24 900 kg·m-2·s-1,heat flux densities from 5 to 15 MW·m-2,and fluid temperatures from ambient to-150℃.The research indicates that the heat transfer characteristics of rocket kerosene flow are influenced by heat flux density,fluid temperature,and mass flow rate.The heat transfer coefficient increases by approximately 25%-33%for fluid temperatures ranging from 50 to 135℃.With heat flux densities varying from 5.0 to 15.0 MW·m-2,the heat transfer coefficient increases by 8.3%.Additionally,for mass flow rates within the range of 12 450-24 900 kg·m-2·s-1,the heat transfer coefficient shows a significant increase of 60.2%.Enhancing roughness improves the heat transfer of rocket kerosene flow,with an increase in roughness from 11.88 μm to 17.53 μm resulting in over a 20%enhancement in heat transfer.

3D printingrectangle channelheat transferroughnessrocket kerosene

刘朝晖、彭乐钦、李沛奇、杨宝娥、王玫

展开 >

西安交通大学动力工程多相流国家重点实验室,710049,西安

西安航天动力研究所航天液体动力全国重点实验室,710100,西安

3D打印 矩形通道 流动换热 粗糙度 火箭煤油

2025

西安交通大学学报
西安交通大学

西安交通大学学报

北大核心
影响因子:0.914
ISSN:0253-987X
年,卷(期):2025.59(1)