首页|改进的坐标残差网络应用于17-4PH材料蚀后剩余寿命预测研究

改进的坐标残差网络应用于17-4PH材料蚀后剩余寿命预测研究

Improved CA-ResNet Network for Residual Life Prediction of 17-4PH Material Damaged by Cavitation Erosion

扫码查看
为解决材料汽蚀损伤后剩余使用寿命预测困难的科学问题,提出了一种融合卷积神经网络技术的寿命预测方法,具体采用残差网络(ResNet)模型,并嵌入坐标注意力机制(CA),通过对模型进行卷积、通道数及下采样方式的优化,构建改进的坐标残差网络(CA-ResNet)模型,以实现对17-4PH材料汽蚀损伤后剩余使用寿命的精确预测.基于超声波汽蚀试验得到的汽蚀特性曲线,通过逻辑回归(Logistic)方程对汽蚀阶段进行定量划分,并定义寿命系数ζ,同时借助超景深显微镜获取材料损伤后不同时刻的显微图像数据库,并与寿命系数ζ相对应.研究结果表明,改进的CA-ResNet网络模型在CIFAR10公开数据集上验证准确率可达92.2%,在收集的17-4PH材料的汽蚀损伤数据集上的验证准确率可达93.2%,相比ResNetl8网络模型,准确率分别提高了1.5%和3.5%.通过学习率、批处理量等超参数优化后,该模型在汽蚀损伤数据集上准确率可达95.0%.采用端到端的数据驱动思想,可实现从汽蚀损伤形貌到汽蚀寿命的精确预测.
In order to address the scientific challenge of predicting the remaining useful life of materials damaged by cavitation erosion,a life prediction method that integrates convolutional neural network technology is introduced.Specifically,the residual network(ResNet)model is utilized and enhanced with a coordinate attention mechanism(CA).Through optimization of the convolution,channel number and down-sampling method in the model,an improved coordinate residual network(CA-ResNet)model is developed to accurately predict the remaining useful life of 17-4PH material damaged by cavitation erosion.Initially,the cavitation characteristic curve is obtained from ultrasonic cavitation tests.Then,the cavitation stages are quantitatively segmented using a Logistic equation,defining the life coefficient ζ.Meanwhile,with the assistance of a super-depth-of-field microscope,microscopic images of the material at various post-damage time points are captured to establish a microscopic image database correlated with the life coefficient ζ.The results demonstrate that the improved CA-ResNet network model achieves a verification accuracy of 92.2%on the CIFAR10 public dataset and 93.2%on the collected cavitation damage dataset of 17-4PH material.This represents a 1.5%and 3.5%accuracy improvement over the ResNetl8 network model,respectively.By fine-tuning hyperparameters like learning rate and batch size,the accuracy on the cavitation damage dataset is elevated to 95.0%.In this paper,an end-to-end data-driven approach is adopted to achieve accurate prediction from cavitation damage morphology to post-cavitation life.

ResNetcoordinate attention mechanismcavitation erosionlife prediction

邸娟、王程波、贺磊、牛亚龙、彭超义、王建锋

展开 >

太原科技大学车辆与交通工程学院,030024,太原

株洲时代新材料科技股份有限公司,412007,湖南株洲

湖南大学材料科学与工程学院,410082,长沙

同济大学工程结构性能演化与控制教育部重点实验室,200092,上海

展开 >

残差网络 坐标注意力机制 汽蚀 寿命预测

2025

西安交通大学学报
西安交通大学

西安交通大学学报

北大核心
影响因子:0.914
ISSN:0253-987X
年,卷(期):2025.59(1)