首页|基于透视变换和SNc-YOLOv5的大块煤识别方法应用

基于透视变换和SNc-YOLOv5的大块煤识别方法应用

扫码查看
为了提高带式输送机大块煤识别的准确率,避免大块煤堆积对皮带造成的磨损,延长输送机的使用寿命,提出了基于透视变换和SNc-YOLOv5的大块煤识别方法,该方法首先利用透视变换技术对原始图像进行处理,有效地将图像中的非输送机区域滤除,并对输送机区域进行坐标矫正;然后,采用SNc-YOLOv5模型对经过标准化处理的图像进行深度学习建模,得到大块煤识别模型;最后,通过试验分析和现场应用对该方法进行有效性验证。结果表明:该方法在1号煤矿数据集的试验分析精确率为94。8%,召回率为83。2%,在2号煤矿数据集的试验分析精确率为92。8%,召回率为85。3%,现场应用置信度达到0。9,与其他方法进行比较,精确率和召回率指标均优于其他方法;该方法在图像预处理阶段提取带式输送机区域对图像进行标准化,仅对感兴趣区域进行处理,提高了大块煤识别的准确率。该算法部署到某煤矿现场,能够实现实时监测,为带式输送机的安全运行和延长使用寿命提供了有力保障。
Application of large block coal recognition method based on perspective transformation and SNc-YOLOv5
To enhance the precision of identifying large coal chunks in belt conveyors,mitigate belt wear from coal accumulation and increase the longevity of belt conveyors,a novel method rooted in per-spective transformation and SNc-YOLOv5 was proposed.Firstly,the perspective transformation was uti-lized to refine the original image,successfully omitting areas unrelated to the conveyor and adjusting the conveyor's coordinates.Then,the SNc-YOLOv5 model was undertaken to establish deep learning model on these standardized images,yielding a model adept at recognizing large block coal.The efficacy of this approach was confirmed through both test analysis and on-site application.The results show that the precision rate on the dataset of Mine 1 is 94.8%,with a recall rate of 83.2%,while on Mine 2's dataset,the precision rate is 92.8%,with a recall rate of 85.3%.In field applications,the confidence level reaches 0.9,compared with alternative techniques,this method outperforms in terms of both accu-racy and recall.By focusing on the conveyor region during image preprocessing,the method not only standardizes the image but also elevates the precision of large block coal identification,which thus con-tinuous real-time surveillance,fortifying the safety and longevity of belt conveyors.

large block coal identificationbelt conveyorperspective transformationnormalisation

于涛

展开 >

国家能源集团新疆能源有限责任公司,新疆乌鲁木齐 830011

大块煤识别 带式输送机 透视变换 图像标准化

国家自然科学基金项目

51874231

2024

西安科技大学学报
西安科技大学

西安科技大学学报

CSTPCD北大核心
影响因子:1.154
ISSN:1672-9315
年,卷(期):2024.44(1)
  • 25