首页|基于HA-RF-SHAP的露天煤矿粉尘浓度预测模型

基于HA-RF-SHAP的露天煤矿粉尘浓度预测模型

扫码查看
为了有效预测和控制煤矿粉尘浓度,保障煤矿工人健康及环境安全,以宝日希勒露天煤矿现场粉尘监测数据为基础,使用随机森林对粉尘浓度进行预测,提出了 4种启发式智能优化算法优化随机森林超参数的方法,通过RMSE、MAE和皮尔逊相关系数R对模型进行评价,采用SHAP可解释模型分析影响露天煤矿粉尘浓度的因素。结果表明:PM2。5、PM10、TSP的最优模型分别为GWO-RF、WOA-RF和HHO-RF;超参数调整使模型整体RMSE指标提升约为1~3,MAE提升约为1~2。5,R提升约4%~6%;PM2。5的预测表现最好,训练集与测试集共同作用时,R为0。946 3,MAE为3。059,RMSE为4。919,其次是PM10、TSP;单因素作用时,湿度对于该矿粉尘浓度影响最大,双因素同时影响下湿度和气压对粉尘浓度变化影响最大。研究提供了一个有效的粉尘浓度预测方法,可准确预测粉尘浓度并确定粉尘最影响因素,对矿山粉尘管控具有重要参考价值。
Prediction model for dust concentration in open-pit coal mines based on HA-RF-SHAP
In order to effectively predict and control the coal mine dust concentration and protect the health of coal miners and environmental safety,the random forest was used to predict the dust concen-tration,and proposed four heuristic intelligent optimization algorithms were proposed to optimize the hy-perparameters of the random forest,based on the on-site dust monitoring datas of Baorixile open-pit mine,and the model was evaluated through the RMSE,MAE,and Pearson's correlation coefficient R,and the SHAP interpretable model was adopted to analyze the factors affecting dust concentration in open-pit mine.The results show that the optimal models for PM2.5,PM10,and TSP are GWO-RF,WOA-RF,and HHO-RF,respectively;the hyperparameter adjustment improves the model's overall RMSE metrics by about 1~3,the MAE by 1~2.5,and the R by about 4%~6%;the best prediction performance is achieved for PM2.5,with the training set and the test set together having an R of 0.946 3,MAE of 3.059 and RMSE of 4.919,followed by PM10 and TSP;humidity has the greatest effect on the dust concentration in this mine under a single factor,and humidity and barometric pres-sure have the greatest effect on the change of dust concentration under the simultaneous effect of two factors.The study provides an effective dust concentration prediction method,possible to predict the dust concentration accurately and determine the most influential factors of dust,which has an important reference value for mine dust control.

open-pit minedust concentration predictionheuristic algorithmshapley additive explana-tionsmodel interpretability

金磊、杨晓伟、张浩、杜勇志、李新鹏、戴春田、周伟

展开 >

国能宝日希勒能源有限公司,内蒙古呼伦贝尔 021000

中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116

露天煤矿 粉尘浓度预测 启发式算法 SHAP 模型可解释性

国家自然科学基金项目

52374145

2024

西安科技大学学报
西安科技大学

西安科技大学学报

CSTPCD北大核心
影响因子:1.154
ISSN:1672-9315
年,卷(期):2024.44(1)
  • 28