首页|冻融循环影响下软硬互层岩体力学特性及微观劣化机制

冻融循环影响下软硬互层岩体力学特性及微观劣化机制

扫码查看
为了解决寒区软硬互层岩质边坡在冻融作用下易引发局部滑坡、滑塌、剥落、掉块等地质灾害的工程安全问题,更好地揭示其稳定性及损伤机制,基于陕北地区砂岩泥岩互层地质原型,采用相似材料制作软硬岩互层类岩石试样,对不同初始饱和度(0%、30%、70%、100%)的软硬岩互层类岩样开展不同循环次数(0,5,10,15,20,25次)的冻融试验,获得岩样冻融损伤劣化规律,利用电镜扫描(SEM)及核磁共振(NMR)试验,对岩样进行微观结构分析,得到岩样内部孔隙结构变化;并结合单轴压缩试验,对岩样开展力学特性分析,得到岩样力学参数;通过以上研究,从宏微观层面上,揭示了软硬互层岩体在冻融循环作用下损伤劣化机制。结果表明:软硬互层岩样的T2谱分布弛豫时间主要集中在0。01~1 ms之间,孔径主要分布在1~10 μm范围内;随着冻融循环次数的增加,T2谱峰值逐渐增大,0~0。5 μm范围内的孔隙在冻融至第5次时逐渐消失,微孔及小孔逐渐减少,中孔及大孔逐渐增加,单轴抗压强度值及弹性模量逐渐降低;岩样在不完全饱和状态下(0%、30%及70%),孔隙结构变化较小,其冻融损伤程度较低;岩样在完全饱和状态下(100%),T2谱及孔径分布变化较大,10~10 000 μm大孔仅在岩样完全饱和情况下存在,损伤劣化情况较明显;软硬互层类岩样冻融损伤来源于两方面:一是类软岩在饱水状态下,内部孔隙因冻融循环而增大,开始出现微小裂隙;另一方面是软、硬岩界面连接位置孔隙中存在未冻水,在冻胀力作用下开始出现裂缝及裂缝扩展情况,最终导致损伤演化,直至断裂破坏。对于寒区工程建设中软硬互层岩质边坡灾害防控具有重要的理论研究价值和实际工程意义。
Mechanism of micro-deterioration of soft and hard interbedded rock mass under the influence of freeze-thaw cycle
To solve the engineering safety problem of geological disasters such as local landslides,col-lapses,peeling,and falling blocks that are easily caused by freeze-thaw action on soft and hard interlay-ered rock slopes in cold regions,and to better reveal their stability and damage mechanisms,this study was based on the geological prototype of sandstone and mudstone interlayers in northern Shaanxi.Simi-lar materials were used to make soft and hard rock interlayered rock samples,and different initial satu-rations(0%,30%,70%,100%)were tested on rock samples with different cycles(0,5,10,15,20,25)of interlayered soft and hard rocks to obtain the degradation law of freeze-thaw damage.Electron microscopy(SEM)and nuclear magnetic resonance(NMR)experiments were employed to analyze the changes in internal pore structure.Additionally,uniaxial compression tests were conducted to reveal the damage and degradation mechanisms of layered rock formations under freeze-thaw cycles.Through the above research,the damage and deterioration mechanism of soft hard interlayered rock masses under freeze-thaw cycles was revealed at the macro and micro levels.Results indicate that the T2 spectrum distribution relaxation time of layered rock specimens is mainly concentrated between 0.01 and 1ms,with pore sizes primarily distributed in the range of 1 to 10 µm.As the number of freeze-thaw cycles in-creases,the peak value of the T2 spectrum gradually increases.Pores in the range of 0 to 0.5μm gradu-ally disappear after the 5th cycle,while micropores and small pores decrease,and medium and large pores increase.Uniaxial compressive strength and elastic modulus gradually decrease.In partially satu-rated conditions(0%,30%and 70%),the changes in pore structure are small,resulting in lower lev-els of freeze-thaw damage.In fully saturated conditions(100%),significant changes in T2 spectrum and pore size distribution occur,with large pores(10~10 000 μm)present only under complete saturation,indicating more pronounced damage and degradation.The freeze-thaw damage to layered rock speci-mens originates from two sources:firstly,in the saturated state,internal pores of soft rock expand due to freeze-thaw cycles,leading to the initiation of tiny cracks;secondly,at the interface between soft and hard rocks,unfrozen water in pore spaces initiates crack formation and propagation under freeze-thaw forces,ultimately leading to fracture.This study holds significant theoretical and practical value for dis-aster prevention and control in the construction of layered rock slopes in cold regions.

freeze-thaw cyclessoft-hard interbeddingsimilar materialsmicrostructuredamage mech-anism

吕远强、蒋蓓茹、赵金刚、姜海波

展开 >

中煤西安设计工程有限责任公司,陕西西安 710000

西安科技大学建筑与土木工程学院,陕西西安 710054

冻融循环 软硬互层 相似材料 细观结构 损伤机理

国家自然科学基金

42220104005

2024

西安科技大学学报
西安科技大学

西安科技大学学报

CSTPCD北大核心
影响因子:1.154
ISSN:1672-9315
年,卷(期):2024.44(2)
  • 33