首页|基于多注意融合网络的输煤皮带异物识别方法

基于多注意融合网络的输煤皮带异物识别方法

扫码查看
为改善现有输煤皮带异物识别算法网络参数量大、识别精度不高的问题,及时避免大块煤和矸石、锚杆等带来的安全隐患,提出了一种基于多注意融合网络的输煤皮带异物识别方法,使用低照度图像处理算法对数据集进行预处理,采用融合局部注意力残差块作为基本特征提取单元,在残差块中融入带有额外偏移量的可变形卷积以增加对不规则特征的描述,用注意力机制对全局特征图做期望最大化处理。结果表明:在Cifar 10数据集和矿用皮带传输异物识别数据集的识别准确率分别为 93。7%和 84。8%;与 ShufflenetV2、MobileNetV2、ResNet 50、ResNet 110、Darknet 53算法相比,识别准确率分别提升了 4。7%、3。9%、0。4%、0。5%、1。7%;与识别准确率相近的ResNet 50、ResNet 110算法相比,网络参数量和计算复杂度大大减小。识别方法能够快速识别输煤皮带异物,且具有较高的识别准确率,对保障煤矿运输系统的安全运行具有参考意义。
Foreign object recognition in coal conveyor belt based on multi-attention fusion network
In order to slove the problems of large network parameters and low recognition accuracy of the existing foreign object recognition algorithms for coal conveyor belt,and to avoid safety hazards just in time caused by large blocks of coal,gangue,anchor rods,etc.,a foreign object recognition method for coal conveyor belts based on a multi-attention fusion network is proposed.The low illumination image processing algorithm is adopted to preprocess the dataset.A fused local attention residual block is cho-sen as the basic feature extraction unit with deformable convolution with additional offsets integrated in-to the residual block to enhance the description of irregular features.The global feature map is pro-cessed with expectation maximization using an attention mechanism.The results show that the recogni-tion accuracy rates on the Cifar10 dataset and the foreign object recognition dataset for mining belt transmission are 93.7%and 84.8%,respectively.Compared with algorithms such as ShufflenetV2,MobileNetV2,ResNet 50,ResNet 110,and Darknet 53,the proposed method increases the recognition accuracy rates by 4.7%,3.9%,0.4%,0.5%and 1.7%,respectively.Compared with algorithms such as ResNet50 and ResNet110 with similar recognition accuracy rates,it reduces the network pa-rameters and computational complexity significantly.This recognition method can quickly identify for-eign object in coal conveyor belt and has a high recognition accuracy rate,which has reference signifi-cance for ensuring the safe operation of coal mine transportation systems.

foreign object recognitioncoal conveyor beltDarknet networkdeformable convolutionat-tention mechanism

李利、梁晶、陈旭东、寇发荣、潘红光

展开 >

西安科技大学电气与控制工程学院,陕西西安 710054

西安市电气设备状态监测与供电安全重点实验室,陕西西安 710054

西安科技大学机械工程学院,陕西西安 710054

异物识别 输煤皮带 Darknet网络 可变形卷积 注意力机制

陕西省自然科学基础研究计划项目陕西省教育厅科研计划项目西安市科技计划项目

2024JC-YBQN-072623JK055023DCYJSGG0025-2022

2024

西安科技大学学报
西安科技大学

西安科技大学学报

CSTPCD北大核心
影响因子:1.154
ISSN:1672-9315
年,卷(期):2024.44(5)