首页|京津冀地区PM2.5污染区域及人口暴露风险研究

京津冀地区PM2.5污染区域及人口暴露风险研究

扫码查看
为缓解京津冀地区面临的严峻PM2.5污染,本研究利用公里级高分辨率PM2.5数据集对京津冀地区的PM2.5时空分布格局进行分析,利用超标频数法和人口相对暴露风险模型评估京津冀地区的区域暴露风险和人口暴露风险,并预测未来的人口暴露风险.结果表明,京津冀地区PM2.5浓度在2001至2013年间呈波动上升趋势,在2014至2020年间呈显著下降趋势,到2020年时下降至38.43μg/m3.京津冀的东南部地区PM2.5浓度大于西北部地区.对于区域暴露风险,承德市和张家口市较低,邯郸市、衡水市、廊坊市、石家庄市和邢台市较高.对于人口暴露风险,承德市、张家口市和秦皇岛市较低,北京市、邯郸市、天津市、廊坊市、邢台市和石家庄市较高.综合来看承德市和张家口市的暴露风险最低,邯郸市、廊坊市、邢台市和石家庄市的暴露风险最高.京津冀地区在2030、2035、2060年的人口暴露风险较低(0级).本研究将区域暴露风险和人口暴露风险结合,避免了单一评价指标带来的误差,对暴露风险得到了更准确的理解.
Study on the spatial and temporal distribution patterns and exposure risks of PM2.5 pollution in Beijing-Tianjin-Hebei Region
To mitigate the severe PM2.5 pollution in Beijing,Tianjin and Hebei region,the kilome-ter-level high-resolution PM2.5 dataset is used to analyze the spatial and temporal distribution pat-terns of PM2.5 in the Beijing-Tianjin-Hebei Region,with the frequency of exceedance method and population relative exposure risk model used to assess the regional exposure risk and population exposure risk in Beijing,Tianjin and Hebei region.This study also predicts the future population exposure risk.The results illustrate that the PM2.5 concentration in Beijing-Tianjin-Hebei region showes a fluctuating increasing trend between 2001 and 2013,and a significant decreasing trend between 2014 and 2020,decreasing to 38.43 μg/m3 by 2020.The PM2.5 concentration in the southeastern part of Beijing-Tianjin-Hebei is larger than that in the northwestern part.For re-gional exposure risk,it is lower in Chengde and Zhangjiakou,and higher in Handan,Hengshui,Langfang,Shijiazhuang and Xingtai.For population exposure risk,it is lower in Chengde,Zhangjiakou and Qinhuangdao,and higher in Beijing,Handan,Tianjin,Langfang,Xingtai and Shijiazhuang.Overall,Chengde and Zhangjiakou have the lowest exposure risk,while Handan,Langfang,Xingtai and Shijiazhuang have the highest exposure risk.The population exposure risk in Beijing-Tianjin-Hebei Region will be low(Level 0)in 2030,2035 and 2060.This study com-bines regional exposure risk and population exposure risk to avoid the errors caused by a single e-valuation index and to obtain a more accurate understanding of exposure risk.

Beijing-Tianjin-Hebei RegionPM2.5spatial and temporal distribution patternre-gional exposure riskpopulation exposure risk

宋俊、李春林、胡远满、刘淼、黄泳波

展开 >

山东师范大学地理与环境学院,山东济南 250358

中国科学院沈阳应用生态研究所中国科学院森林生态与管理重点实验室,辽宁沈阳 110016

航天宏图信息技术股份有限公司,北京 100195

京津冀地区 PM2.5 时空分布格局 区域暴露风险 人口暴露风险

国家自然科学基金资助项目国家自然科学基金资助项目中国科学院青年创新促进会资助项目

41871192417306472021194

2024

西安理工大学学报
西安理工大学

西安理工大学学报

CSTPCD北大核心
影响因子:0.382
ISSN:1006-4710
年,卷(期):2024.40(2)
  • 1
  • 10