首页|基于注意力机制的GRU神经网络辅助INS/GNSS组合导航算法

基于注意力机制的GRU神经网络辅助INS/GNSS组合导航算法

GRU neural network assisted INS/GNSS integrated navigation algorithm based on attention mechanisms

扫码查看
针对全球导航卫星系统(Global Navigation Satellite System,GNSS)信号失锁导致定位精度低的问题,提出一种基于注意力机制的门控循环单元(Gated Recurrent Unit,GRU)神经网络辅助惯性导航系统(Inertial Navigation System,INS)和全球导航卫星系统(Global Navigation Satellite System,GNSS)的组合导航算法.在惯性测量单元(In-ertial Measurement Unit,IMU)信号中采用5点中值滤波降低随机噪声,训练结合注意力机制的GRU神经网络辅助组合导航.当GNSS信号失锁时,预测伪GNSS位置辅助组合导航,以解决惯性导航系统(Inertial Navigation Sys-tem,INS)位置随时间发散的问题.仿真结果表明,与基于多层感知机(Multi-Layer Perceptron,MLP)神经网络的算法和基于长短期记忆递归(Long Short-Term Memory,LSTM)神经网络的算法相比,所提算法在转弯和直线场景下,北向和东向位置最大误差均低于对比算法,可以在GNSS信号失锁的情况下提高导航定位精度.
A navigation algorithm which combined the attention mechanism-based gated recurrent unit(GRU)neural network-assisted inertial navigation system(INS)and the global navigation sat-ellite system(GNSS)is proposed for the problem of low positioning accuracy caused by the lock-lose in the GNSS signals.The method applies a 5-point median filter to reduce random noise from the measurement signal of the inertial measurement unit(IMU),and trains a GRU neural network combined with attention mechanism to assist navigation.When the GNSS signal loses lock,the pseudo GNSS position is predicted to assist the integrated navigation,solving the problem of position divergence over time in the inertial navigation system(INS).Simulation results indicate that compared to algorithms based on multi-layer perceptron(MLP)neural networks and long short-term memory(LSTM)recurrent neural networks,the proposed algorithm exhibits lower maximum errors in northward and eastward positions in both turning and straight-line scenarios.The proposed algorithm can enhance navigation positioning accuracy when lock-lose occurs in the GNSS signals.

global navigation satellite systeminertial navigation systemintegrated navigationme-dian filterattention mechanismgated recurrent unit-neural network

黄庆东、王皓、郭振、李佳欣、张典

展开 >

西安邮电大学通信与信息工程学院,陕西西安 710121

陕西省信息通信网络及安全重点实验室,陕西西安 710121

全球导航卫星系统 惯性导航系统 组合导航 中值滤波 注意力机制 门控循环单元神经网络

国家自然科学基金

62071377

2024

西安邮电大学学报
西安邮电学院

西安邮电大学学报

CSTPCD
影响因子:0.795
ISSN:1007-3264
年,卷(期):2024.29(2)