首页|基于二阶远离步的积极集最小闭包球算法

基于二阶远离步的积极集最小闭包球算法

An active-set minimum enclosing ball algorithm based on second-order away-step

扫码查看
对高维大规模数据集的近似最小闭包球(Minimum Enclosing Ball,MEB)问题进行研究,提出一种基于二阶远离步的积极集最小闭包球算法.首先,基于对偶目标函数的二阶泰勒展开选择远离步指标,给出求解MEB问题的二阶远离步算法,并计算算法的多项式时间复杂度.然后,进一步设计一个改进的积极集算法计算高维大规模数据集的近似MEB,算法每次迭代选取距离球心较远的数据点构造积极集,并调用二阶远离步算法求解.数值实验结果表明,所提算法能够快速有效地处理高维大规模数据集的高精度近似MEB问题.
The approximate minimum enclosing ball(MEB)problem of high-dimensional large-scale data sets is studied.An active-set MEB algorithm based on the second-order away-step is proposed.Firstly,the away-step index is selected based on the second-order Taylor expansion of the dual ob-jective function,the second-order away-step algorithm for solving the MEB problem is presented.The polynomial time complexity of the proposed algorithm is established.Then an improved fast ac-tive-set algorithm is further designed to compute the approximate MEB for high-dimensional large-scale datasets.The algorithm selects data points far from the center of the ball to construct an ac-tive-set at each iteration,and calls the second-order away-step algorithm.Numerical experiments re-sult show that the proposed algorithm can quickly and efficiently deal with the high-precision ap-proximate MEB problem of the high-dimensional large-scale datasets.

machine learningminimum enclosing ballhigh-dimensional large-scale datasetsaway-stepactive-set algorithm

丛伟杰、安梦园、李承臻

展开 >

西安邮电大学理学院,陕西西安 710121

西安邮电大学计算机学院,陕西西安 710121

机器学习 最小闭包球 高维大规模数据集 远离步 积极集算法

国家自然科学基金项目陕西省自然科学基础研究计划项目

121023412024JC-YBQN-0052

2024

西安邮电大学学报
西安邮电学院

西安邮电大学学报

CSTPCD
影响因子:0.795
ISSN:1007-3264
年,卷(期):2024.29(3)