首页|联合数据压缩和安全保护的协同计算任务迁移策略

联合数据压缩和安全保护的协同计算任务迁移策略

Task offloading strategy for collaborative computing with joint data compression and security protection

扫码查看
针对端边云协同计算系统中的任务迁移问题,建立一个联合数据压缩和安全保护的任务迁移模型,并提出一种基于改进鲸鱼算法的迁移算法以获得最佳的任务迁移策略.该模型利用数据压缩技术对需要传输的任务数据进行压缩,以降低任务的传输时延.同时,引入隐私熵对任务迁移的隐私风险进行量化,实现数据可用性与安全性之间的平衡.所提迁移算法引入自适应概率阈值同时使用粒子群算法中的惯性权重,以平衡全局搜索和局部开发的能力.实验结果表明:任务迁移模型可以有效地降低任务处理时延并保护任务数据安全;与现有迁移算法相比,所提迁移算法具有更快的收敛速度且能够得到更优的目标值.
For the task offloading in end-edge-cloud collaborative computing systems,a task offload-ing model that combines data compression and security protection is established,and an offloading algorithm based on improved whale algorithm is proposed to obtain the best task offloading strate-gy.This model utilizes data compression technology to compress the task data that needs to be transmitted,so as to reduce the transmission delay of the task.At the same time,privacy entropy is introduced to quantify the privacy risk of task offloading,thereby achieving a balance between data availability and security.The proposed offloading algorithm introduces an adaptive probability threshold and uses the inertia weight in particle swarm optimization to balance the ability of global search and local development.The simulation results show that the task offloading model can effec-tively reduce the task processing latency and protect the task data security.Meanwhile,compared with the existing offloading algorithms,the proposed algorithm has a faster convergence speed and can obtain better target values.

end-edge-cloud collaborative computingtask offloadingsecurity protectiondata com-pressionprivacy entropy

王忠民、王彦灵、金小敏

展开 >

西安邮电大学计算机学院,陕西西安 710121

西安市大数据与智能计算重点实验室,陕西西安 710121

端边云协同计算 任务迁移 安全保护 数据压缩 隐私熵

陕西省教育厅科学研究计划项目

23JP164

2024

西安邮电大学学报
西安邮电学院

西安邮电大学学报

CSTPCD
影响因子:0.795
ISSN:1007-3264
年,卷(期):2024.29(4)