首页|基于IMSE和参数优化VMD的滚动轴承故障诊断方法

基于IMSE和参数优化VMD的滚动轴承故障诊断方法

Rolling bearing fault diagnosis method based on IMSE and parameter optimized VMD

扫码查看
针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法.该方法先利用IMSE对原始时间序列进行平滑粗粒化,并用每个序列的最大值代替平均值表示粗粒化序列的信息,避免多尺度样本熵(Multiscale Sample Entropy,MSE)中存在的数据丢失问题.结合尺度谱与求和模糊熵优化VMD参数,得到最优模态分量并筛选重构信号,将重构信号的IMSE值作为特征向量输入支持向量机进行故障诊断.实验结果表明,所提方法获得了更精确的故障信号特征且提高了故障诊断精度.
Aiming at the challenges of feature extraction from rolling bearing vibration signals and the low accuracy of fault diagnosis,a novel fault diagnosis method based on improved multiscale sample entropy(IMSE)and parameter-optimized variational mode decomposition(VMD)is pro-posed.This method initially employs the IMSE to perform smooth coarse-graining on the original time series,replacing the average value with the maximum value of each sequence to represent the coarse-grained information,thus avoiding the data loss issue inherent in multiscale sample entropy(MSE).By optimizing VMD parameters through a combination of scale spectrum and summation fuzzy entropy,the optimal mode components are obtained,and the reconstruction signal is selected.The IMSE values of the reconstructed signals serve as feature vectors input into a support vector machine for fault diagnosis.Experiment results demonstrate that the proposed method obtains more accurate fault signal features and increases the fault diagnosis accuracy.

fault diagnosis of rolling bearingvariational modal decompositionscale spectrasummed fuzzy entropymultiscale sample entropy

王敏娟、贾茜、汪友明、丁文柯

展开 >

西安邮电大学自动化学院,陕西西安 710121

滚动轴承故障诊断 变分模态分解 尺度谱 求和模糊熵 多尺度样本熵

陕西省重点研发计划项目

2022SF-259

2024

西安邮电大学学报
西安邮电学院

西安邮电大学学报

CSTPCD
影响因子:0.795
ISSN:1007-3264
年,卷(期):2024.29(4)