首页|低功耗无人机反向散射边缘计算网络优化方案

低功耗无人机反向散射边缘计算网络优化方案

Optimization scheme for low-power UAV backscattering mobile edge computing network

扫码查看
针对移动设备能量不足导致的算力有限难以处理复杂任务的问题,提出一种低功耗无人机(Unmanned Aerial Vehicle,UAV)反向散射(Backscattering Communication,BackCom)边缘计算(Mobile Edge Computing,MEC)网络优化方案.该方案首先根据UAV与BackCom辅助MEC系统模型建立非凸问题,再利用块坐标下降(Block Coodinate Descent.BCD)法将该问题分解为多个凸问题,利用对偶求解、次梯度迭代以及连续凸近似(Suc-cessive Convex Approximation,SCA)算法优化UAV轨迹.最后,通过仿真分析资源分配和UAV轨迹设计方案,验证该方案的有效性.仿真结果表明,所提方案能够最大化用户设备储存量的同时最小化系统能耗.
To address the issue of limited computational power due to insufficient energy in mo-bile devices when handling complex tasks,a low-power unmanned aerial vehicle(UAV)back-scattering communication(BackCom)mobile edge computing(MEC)network optimization scheme is proposed.The scheme first establishes a non-convex problem based on the UAV and BackCom-assisted MEC system model,then decomposes the problem into multiple convex prob-lems using block coordinate descent(BCD).Dual solution,subgradient iteration and successive convex approximation(SCA)algorithm are adopted to optimize the UAV trajectory.Finally,the effectiveness of the proposed scheme is verified by simulation analysis for the resource allocation and UAV trajectory design.Simulation results show that the proposed scheme can maximize the user device storage and minimize the system energy consumption.

unmanned aerial vehiclebackscattering communicationmobile edge computingLa-grange dual algorithmsuccessive convex approximation algorithm

刘超文、王丽平、王怡心、张浩然、刘伯阳

展开 >

西安邮电大学通信与信息工程学院,陕西西安 710121

陕西省信息网络及安全重点实验室,陕西西安 710121

爱生无人机试验测试靖边有限公司,陕西 榆林 718500

无人机 反向散射通信 移动边缘计算 拉格朗日对偶算法 连续凸近似算法

2024

西安邮电大学学报
西安邮电学院

西安邮电大学学报

CSTPCD
影响因子:0.795
ISSN:1007-3264
年,卷(期):2024.29(5)