BLMMSE-MRC equalization method based on underwater acoustic OTFS system
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
维普
万方数据
针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Combining Based on Block Linear Minimum Mean Square Error,BLMMSE-MRC)均衡算法.该算法基于水声信道的稀疏性,利用分块线性最小均方误差算法进行预处理,将输出结果作为MRC检测的初始估计值,然后在延迟多普勒空间中估计发射信号的多径分量,并利用MRC进行合并检测.实验结果表明,与已有零填充最大比合并算法(Maximal Ratio Combining Based on Zero Padding,ZP-MRC)和零填充块线性最小均方误差算法(Block Linear Minimum Mean Square Error Based on Zero Padding,ZP-BLMMSE)相比,所提算法能快速收敛,在10-4误码率条件下,信噪比提升了 2 dB以上.
To address the problem of slow convergence and high bit error rate in the existing or-thogonal time frequency space(OTFS)modulation system with maximal ratio combining(MRC)e-qualization,a block linear minimum mean square error(BLMMSE)-MRC equalization algorithm based on underwater OTFS system is proposed.The algorithm takes advantage of the sparsity of underwater channels and uses the block linear minimum mean square error algorithm for preprocess-ing.The output results are used as the initial estimation value for MRC detection,and then the multipath components of the transmitted signal are estimated in the delay-Doppler space,and are combined using MRC.Experiment results show that compared with the existing zero padding maxi-mal ratio combining(ZP-MRC)algorithm and the zero-padding block linear minimum mean square error(ZP-BLMMSE)algorithm,the proposed algorithm can converge quickly,and the signal-to-noise ratio is improved by more than 2 dB at a bit error rate of 10-4.
orthogonal time frequency spacewater acoustic communicationtime-delay Dopplermaximal ratio combininglinear minimum mean square error