首页|基于多尺度特征提取网络的水下图像增强算法

基于多尺度特征提取网络的水下图像增强算法

Underwater image enhancement algorithm based on multi-scale feature extraction network

扫码查看
针对现有水下图像增强方法存在颜色失真、细节模糊等问题,提出一种基于多尺度特征提取网络的水下图像增强算法.首先,通过不同尺度的特征提升特征利用率,并针对图像三通道衰减不同的问题,引入通道注意力机制提高图像的对比度恢复效果.其次,网络引入残差连接并加入随机丢失层,避免梯度消失,同时设计联合损失函数,防止单一损失函数可能导致模型色彩校正偏向背景色彩.实验结果表明,所提方法在减少细节丢失、改善色偏等方面效果有所提升.
In response to the problems of color distortion and blurred details in existing underwa-ter image enhancement methods,a convolutional network structure that utilizes multi-scale fea-tures and channel attention mechanism to enhance underwater images is proposed.The feature u-tilization is firstly improved by using features at different scales,and a channel attention mecha-nism is introduced to effectively improve the contrast restoration effect of the image in response to the different attenuation of the image three channels.Secondly,the network introduces residual connections and adds a random loss layer to avoid gradient vanishing.In order to prevent a single loss function from causing the model color correction to bias toward the background color,a joint loss function is designed.The experimental results show that the proposed method has shown im-provement in reducing detail loss and improving color cast.

underwater image enhancementmulti-scalechannel attention mechanismresidual connectionjoint losses

刘卫华、吴昊、益琛

展开 >

西安邮电大学 通信与信息工程学院,陕西 西安 710121

陕西省法庭科学电子信息实验研究中心,陕西 西安 710121

陕西省无线通信与信息处理技术国际合作研究中心,陕西 西安 710121

水下图像增强 多尺度 通道注意力机制 残差连接 联合损失

2024

西安邮电大学学报
西安邮电学院

西安邮电大学学报

CSTPCD
影响因子:0.795
ISSN:1007-3264
年,卷(期):2024.29(5)