首页|基于改进经验模态分解和混合深度学习模型的风速预测

基于改进经验模态分解和混合深度学习模型的风速预测

扫码查看
准确的风速预测对风电消纳和电力系统的稳定运行具有重要意义.提出将改进的自适应噪声完全集合经验模态分解(ICEEMDAN)方法和混合深度学习模型相结合以提高风速预测准确性.首先,采用ICEEMDAN分解方法提取复杂风速序列中不同频率特征;其次,针对不同频率特征构建时间卷积网络(TCN)-门控循环单元神经网络(GRU)模型,获取长期时序信息并对各特征序列进行预测;最后,加权集成每个特征序列的预测值作为最终结果.实验结果表明,所提ICEEMDAN-TCN-GRU模型较对比模型模型预测精度高、稳定性强.
Wind Speed Prediction Based on Improved Empirical Mode Decomposition and Hybrid Deep Learning Models
Accurate wind speed prediction is of great significance for wind power consumption and the stable operation of power system.This paper proposes to combine the improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a hybrid deep learning model to improve the accuracy of wind speed prediction.Firstly,ICEEMDAN is used to extract different frequency features in complex wind speed sequences.Then a temporal convolution network(TCN)-gated recurrent unit neural network(GRU)model is constructed for the different frequency features to obtain the long-term time-series information and predict the sequence of each feature.Finally,the predicted value of each feature sequence is weighted and integrated as the final result.The experimental results show that the proposed ICEEMDAN-TCN-GRU model has high prediction accuracy and strong stability compared with the contrast model.

wind powerwind speed predictiontime series decompositionTCN networkGRU neural networks

杨迪、王辉、贺仁杰、成润坤、张国维、刘达

展开 >

华北电力大学经济与管理学院,北京 102206

华北电力大学智慧能源研究所,北京 102206

风电 风速预测 时间序列分解 时间卷积网络 门控循环单元神经网络

国家社会科学基金

20BGL186

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(1)
  • 20