首页|基于非平稳Transformer的超短期风电功率多步预测

基于非平稳Transformer的超短期风电功率多步预测

扫码查看
针对风电预测中波动性和随机性造成的风电功率多步预测精确度不高的问题,提出一种基于非平稳Transformer的超短期风电功率多步预测模型.利用皮尔逊相关系数法(PCC)和主成分分析法(PCA)对风电功率及其影响因素的分析确定输入数据,结合可以提升非平稳时序预测效果的非平稳Transformer模型,高效充分地挖掘输入数据与输出功率的复杂关系,构建风电功率超短期预测模型.实例分析表明,所提方法对不同预测步长下的风电功率进行预测时均具有较高的预测精度,且预测结果更稳定.
Multi-step Prediction of Ultra-short-term Wind Power Based on Non-stationary Transformer
Targeting the problem of low accuracy in the multi-step prediction of wind power caused by the volatility and randomness in wind power prediction,the paper proposes a multi-step prediction model of ultra-short-term wind power based on non-stationary transformer.The Pearson correlation coefficient(PCC)and principal component analysis(PCA)are used to analyze the wind power and its influencing factors to determine the input data.Based on the non-stationary transformer model that can enhance the effect of non-stationary time series prediction,the complex relationship between the input data and the output power is efficiently and adequately explored,and the ultra-short-term prediction model of the wind power is constructed.The example analysis shows that the proposed method has high prediction accuracy and more stable prediction results in predicting the wind power with different prediction step lengths.

wind powerpredictionPCCPCAnon-stationary transformer model

张亚丽、王聪、张宏立、马萍、李新凯

展开 >

新疆大学电气工程学院,新疆乌鲁木齐 830017

风电功率 预测 皮尔逊相关系数 主成分分析 非平稳Transformer模型

国家重点研发计划国家自然科学基金

2021YFB15070002021YFB1507000

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(1)
  • 2
  • 16