首页|基于改进概率神经网络的储能电池荷电状态估计

基于改进概率神经网络的储能电池荷电状态估计

扫码查看
锂离子电池荷电状态(SOC)估计技术是储能电站电池管理系统重要组成部分.为了实现对SOC的准确估算,提出一种改进概率神经网络(MPNN)用于储能电池荷电状态估计.相较于传统神经网络,结合概率函数和补偿机制的MPNN,不仅可避免陷入局部最优,而且具有更优秀的拟合能力,可进一步提高SOC估计精度.仿真实验表明,所提MPNN方法的SOC估计值平均绝对误差和均方误差均低于1%,获得了满意的性能.
State-of-Charge Estimation of Energy Storage Batteries Based on Modified Probabilistic Neural Networks
State of charge(SOC)estimation technology for Li-ion battery is an important part of battery management system in energy storage power station.In order to achieve accurate SOC estimation,the paper proposes a modified probabilistic neural network(MPNN)to make an estimation of SOC.Compared with traditional neural networks,MPNN combined with probability function and compensation mechanism can not only avoid falling into local optimization,but also has better fitting ability,further improving SOC estimation accuracy.Simulation results show that the mean absolute error and mean square error of SOC estimation using the proposed MPNN method are both lower than 1%,and satisfactory performance is obtained.

energy storage stationLi-ion batteriesstate of chargeneural networkdata-driven

翟苏巍、李文云、周成、汪成、侯世玺

展开 >

中国南方电网云南电网有限责任公司电力科学研究院,云南昆明 650217

中国南方电网云南电力调度控制中心,云南昆明 650011

河海大学人工智能与自动化学院,江苏南京 210098

储能电站 锂离子电池 荷电状态 神经网络 数据驱动

国家自然科学基金中国南方电网云南电网有限责任公司科技项目

62103132YNKJXM20220048

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(2)
  • 29