首页|基于深度强化学习面向虚假拓扑攻击和拓扑优化的电网调度方法

基于深度强化学习面向虚假拓扑攻击和拓扑优化的电网调度方法

扫码查看
随着高比例可再生能源的接入和虚假拓扑攻击的频率不断增加,传统的电网控制方法和发电出力调整调度方法已经难以满足电力系统运行的需要.因此,设计并实现了一种基于深度强化学习面向虚假拓扑攻击和拓扑优化的电网调度方法,使智能体能够在正常的负荷波动以及随机发生的拓扑攻击影响下,通过深度强化学习方法决策并执行调整电网拓扑结构的动作,提高电力系统运行的安全性.最后,基于IEEE 14节点系统数据的仿真验证了所提方法的有效性.
Deep Reinforcement Learning Based Dispatching Method for Power Grid Facing False Topology Attack and Topology Optimization
With the integration of high-penetration renewable energy and the increasing frequency of false topology attack,the traditional power grid control methods and power generation output adjustment scheduling methods are no longer able to meet the needs of power system operation.Therefore,this article designs and implements the deep reinforcement learning based scheduling method for power grid facing the false topology attack and topology optimization.This method enables intelligent agents to make decisions and execute actions to adjust the power grid topology structure through the deep reinforcement learning under normal load fluctuations and random topology attacks,thereby improving the security of the power system operation.Finally,the effectiveness of the proposed method is verified through simulation based on IEEE 14-bus system data.

power system operationdeep reinforcement learningtopology optimizationfalse topology attack

韩一宁、张程彬、郭敏嘉、赵男、崔明建

展开 >

天津大学电气自动化与信息工程学院,天津 300072

国网太原供电公司,山西太原 030012

云南电网有限责任公司电力科学研究院,云南昆明 650214

电力系统运行 深度强化学习 拓扑结构优化 虚假拓扑攻击

国家自然科学基金资助项目

52207130

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(3)
  • 27