首页|基于变分模态分解和集成学习的光伏发电预测

基于变分模态分解和集成学习的光伏发电预测

扫码查看
针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法.采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电量分量预测值进行组合,获得最终发电量预测结果.实验结果表明,所提方法在公开数据集上对光伏发电量进行预测的均方误差、平均绝对误差、决定系数值分别为0.223 2,0.338 7,0.979 7,与其他方法相比具有更高的预测准确率和更小的误差.
Photovoltaic Power Generation Forecasting Based on Variational Modal Decomposition and Ensemble Learning
Targeting the problem of power generation prediction performance caused by the non-stationarity of photovoltaic power generation data,this paper proposes a photovoltaic power generation prediction method based on improved variational mode decomposition and ensemble learning.The photovoltaic power generation data is decomposed to obtain the power generation components by the improved variational mode decomposition,and the power generation component prediction model is established with the ensemble learning.Furthermore,the predicted values of the power generation components are combined to obtain the final power generation prediction results.The experimental results show that the mean square error,average absolute error,and determinant coefficient values of the proposed method for the photovoltaic power generation prediction on public datasets are 0.223 2,0.338 7,and 0.979 7,respectively,indicating that the method has higher prediction accuracy and smaller errors than other methods.

variational mode decompositionphotovoltaic power generation predictionStacking ensemble learninggreedy algorithm

邱书琦、蹇照民、方立雄、秦婧雯、万俊岭、袁培森

展开 >

国网新疆电力有限公司营销服务中心,新疆乌鲁木齐 830000

南京农业大学人工智能学院,江苏南京 210095

变分模态分解 光伏发电预测 Stacking集成学习 贪心算法

国家自然科学基金资助项目大学生国家级创新训练专项项目

62073121202310307095Z

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(3)
  • 29