首页|基于改进深度确定性策略梯度算法的电压无功优化策略

基于改进深度确定性策略梯度算法的电压无功优化策略

扫码查看
电压无功优化是用来调节电压,保证电力系统安全、稳定、优质运行的必要手段.针对当前电力系统电压控制矛盾突出、无功优化难度大的问题,提出了1种基于改进深度确定性策略梯度(I-DDPG)算法的电压控制策略.首先,建立电力系统最小网损化的目标函数,采用马尔可夫决策过程(MDP)对电力系统无功优化问题进行建模,引入了Ornstein-Uhlenbeck(OU)过程生成自相关噪声,使智能体可以确保首先在1个方向上探索,提高学习效率;其次,采用Sumtree结构的优先经验回放池,提高训练样本利用率,并采用重要性采样(IS)来优化收敛结果.最后,通过IEEE30节点标准系统算例,验证了本文所提出的方法在运行过程中使得平均网损相比于之前的系统降低19.64%,有效降低了电网有功损耗,符合电力系统发展的需要.
Reactive Voltage Optimization Strategy Based on Improved Depth Deterministic Strategy Gradient Algorithm
Reactive voltage optimization is a necessary means to regulate the voltage and ensure the safe,stable and high quality operation of power system.A voltage control strategy based on the improved depth deterministic strategy gradient algorithm is proposed,aiming at the prominent voltage control contradictions and the difficulty of reactive power optimization in power systems.Firstly,the objective function of minimum network loss of power system is established,Markov decision process is used to model the reactive power optimization problem of power system,and Ornstein-Uhlenbeck(OU)process is introduced to generate autocorrelation noise,so that the agent can ensure the exploration in one direction and improve the learning efficiency.Secondly,the priority experience playback pool of Sumtree structure is used to improve the utilization of training samples,and importance sampling is used to optimize the convergence results.Finally,through the example of IEEE30-node standard system,it is verified that the method proposed in this paper can reduce the average network loss by 19.64%compared with the previous system,which can effectively reduce the active power loss of power grid and meet the needs of the development of power system.

reinforcement learningMarkov decision processOU noisepriority experience playback

李付强、张文朝、潘艳、张野、赵伟、李杏、周永东

展开 >

国家电网有限公司华北分部,北京 100053

北京科东电力控制系统有限责任公司,北京 100192

西安理工大学电气工程学院,陕西西安 710048

强化学习 马尔可夫决策过程 OU噪声 优先经验回放

国家自然科学基金资助项目

52177193

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(5)
  • 25