首页|基于Transformer编码器的超短期光伏发电功率预测

基于Transformer编码器的超短期光伏发电功率预测

扫码查看
针对现有光伏发电功率预测方法对于气象数据特征间的内在耦合关联特性挖掘不足的问题,提出基于Transformer编码器的超短期光伏发电功率预测方法.首先,基于历史气象数据和数值天气预报数据重构输入矩阵;然后,采用多层感知机或一维卷积滤波器生成输入嵌入,并添加时序信息嵌入和时间特征嵌入,再通过多头自注意力机制对数据特征间的内在耦合关系进行自动挖掘;最后,通过解码层生成功率预测序列.算例结果表明所提预测方法对于超短期光伏发电功率的预测精度更高,并且具有较好的鲁棒性.
Ultra-short-term Photovoltaic Power Generation Prediction Based on Transformer Encoder
Aiming at the problem that existing photovoltaic power generation power prediction methods are insufficient in exploring the intrinsic coupling and correlation characteristics among meteorological data features,the ultra-short-term photovoltaic power generation prediction method is proposed based on the Transformer encoder.Firstly,the input matrix is reconstructed using historical and numerical weather forecast data.Then the input embedding is generated with multi-layer perceptron or one-dimensional convolution filter.And temporal information embedding and temporal feature embedding are added to the input.Next,the multi-head self-attention mechanism is applied to automatically mine the intrinsic coupling relationship among data features.Finally,the power prediction sequence is produced through the decoding layer.The numerical results demonstrate that the proposed method has higher prediction accuracy and better robustness for ultra-short-term photovoltaic power generation.

photovoltaic power generation predictionself-attention mechanismfeature embedding

黄莉、甘恒玉、刘兴举、寇仲、李筠、王亚辉、顾波

展开 >

贵州乌江水电开发有限责任公司,贵州贵阳 550002

华北水利水电大学电气工程学院,河南郑州 450045

光伏发电功率预测 自注意力机制 特征嵌入

国家自然科学基金资助项目河南省自然科学基金资助项目

62305112232300420152

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(5)
  • 26