首页|基于改进深度残差网络的柔性直流配电线路故障辨识

基于改进深度残差网络的柔性直流配电线路故障辨识

扫码查看
针对现有深度学习方法在柔性直流输电系统故障辨识方面存在抗噪性和历史样本较少时性能不足的问题,提出一种基于改进深度残差网络(ResNet)的柔性直流输电线路故障辨识方法.首先,对残差单元进行改进,将注意力机制和正则化方法融入残差单元,并从宽度和深度2方面对模型进行优化完善.然后,对故障电气量进行特征筛选,在交叉验证中执行递归特征消除(RFE),依据特征属性定义关键特征.最后,在PSCAD仿真平台上搭建张北-北京四端±500 kV柔性直流电网仿真模型,通过仿真验证了所提方法在抗噪声干扰和小样本数据情况下故障辨识的有效性.
Fault Identification for Flexible DC Distribution Line Based on Improved Deep Residual Network
An improved deep residual network(ResNet)fault identification method for flexible direct current(FD)transmission lines is proposed to address the issues of poor anti-noise performance and insufficient performance with limited historical samples in existing deep learning methods.Firstly,the residual unit is enhanced by integrating attention mechanisms and regularization methods,and the model is optimized in terms of width and depth.Then,feature screening of the fault electrical quantities is conducted using recursive feature elimination(RFE)within cross-validation to define key features based on feature attributes.Finally,a simulation model of the Zhangbei-Beijing four-terminal±500 kV FD transmission network is established on the PSCAD simulation platform.The effectiveness of the proposed method under anti-noise interference and small sample size conditions is verified through simulations.

flexible DC transmission systemResNetattention mechanismfeature selectionfault identification

赵妍、张森禹、黄艳祖、徐安坤

展开 >

东北电力大学输变电技术学院,吉林吉林 132012

东北电力大学电气工程学院,吉林吉林 132012

国网承德供电公司,河北承德 067000

柔性直流输电系统 ResNet 注意力机制 特征筛选 故障辨识

国家自然科学基金资助项目

52277170

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(9)