首页|基于增强型麻雀搜索算法的孤岛微电网低碳调度

基于增强型麻雀搜索算法的孤岛微电网低碳调度

扫码查看
针对孤岛微电网的环保性与经济性协同优化问题,提出一种基于增强型麻雀搜索算法(ESSA)的孤岛微电网低碳调度优化方法.首先,建立含碳捕获装置的孤岛微电网优化模型,解决现有模型碳排放量高的问题;其次,在标准麻雀搜索算法中加入精英反向学习与黄金正弦策略,解决原算法中种群多样性低与局部搜索能力差等不足,选取CEC2017中的6个典型基准测试函数验证了ESSA的优越性能;最后,将提出的ESSA应用于孤岛微电网低碳调度优化问题,并与6种先进的鸟类群体智能优化算法进行对比.结果表明:含碳捕获装置的孤岛微电网模型能有效降低碳排放量,增强型麻雀搜索算法更适用于求解微电网低碳调度优化问题.
Low-carbon Scheduling of Islanded Microgrid Using Enhanced Sparrow Search Algorithm
A low-carbon scheduling optimization method based on enhanced sparrow search algorithm(ESSA)is proposed for the economic and environmental collaborative optimization of islanded microgrids.Firstly,an islanded microgrid model with a carbon capture device is established to solve the issue of high carbon emission in existing models.Secondly,the integration of elite opposition-based learning and golden sine strategy into sparrow search algorithm(SSA)overcomes the disadvantages of low population diversity and poor local search capability in the original algorithm,six typical benchmark functions from CEC2017 evaluate the superior performance of ESSA.Finally,ESSA is applied to the low-carbon scheduling optimization problem of islanded microgrid and compared with six advanced bird swarm intelligence optimization algorithms.The results show that the islanded microgrid model with carbon capture device can effectively reduce the carbon emission,ESSA is more suitable for microgrid low-carbon scheduling optimization.

islanded microgridlow carbon schedulingcarbon captureenhanced sparrow search algorithm

杨佳、谢国栋、张孟健、王德光

展开 >

贵州大学电气工程学院,贵州贵阳 550025

华南理工大学计算机科学与工程学院,广东广州 510006

孤岛微电网 低碳调度 碳捕获 增强型麻雀搜索算法

国家自然科学基金资助项目贵州省省级科技计划资助项目

62341303黔科合基础-ZK[2022]一般103

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(9)