首页|改进型Faster-RCNN配网线路防外破检测方法

改进型Faster-RCNN配网线路防外破检测方法

扫码查看
配网线路高度较低,铺设密集,由于外界因素干扰易受外力破坏,为此提出一种改进型Faster-RCNN配网线路防外破检测方法.首先针对采集到的数据集的局限性进行图像增强与标注,建立质量较高的配网线路防外破图像数据集;其次,为提高Faster-RCNN的特征提取与特征学习能力,以深度残差网络ResNet101替换VGG16,引入特征金字塔,融入CBAM注意力机制模块进行结构改进;然后为提高学习效果,采用难易样本平衡损失函数优化进行参数改进;最后通过西北某地区图像进行验证.结果表明,所提模型鲁棒性较强,泛化性较好,具有一定优越性.
Improved Faster-RCNN Distribution Network Line Anti-outburst Detection Method
The distribution network line is low in height and densely laid.Due to the interference of external factors,it is easy to be damaged by external forces,therefore,an improved Faster-RCNN distribution network line anti-outburst detection method is proposed.Firstly,image enhancement and annotation are carried out for the limitations of the collected dataset,and a high-quality image data set for anti-outburst of distribution network lines is established.Secondly,in order to improve the feature extraction ability and feature learning ability of Faster-RCNN,the deep residual network ResNet101 is used to replace VGG16,which is integrated into the CBAM attention mechanism module,and the feature pyramid is introduced for structural improvement.Then,in order to improve the learning effect,the difficulty sample balance loss function optimization is used to improve the parameters.Finally,the image is verified by collecting images in a certain area of Northwest China.The results show that the proposed model has strong robustness,good generalization and certain advantages.

distribution network lineanti-outburst detectionimproved Faster-RCNNstructure improvementparameter improvement

张昊、邵可欣、宋继伟、丁鹏举、陈鑫

展开 >

国网河南省电力公司邓州市供电公司,河南南阳 474150

兰州交通大学自动化与电气工程学院,甘肃兰州 730070

配网线路 防外破检测 改进Faster-RCNN 结构改进 参数改进

国家自然科学基金资助项目

62066024

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(9)