首页|基于注意力机制的CNN-LSTM-XGBoost台风暴雨电力气象混合预测模型

基于注意力机制的CNN-LSTM-XGBoost台风暴雨电力气象混合预测模型

扫码查看
极端台风暴雨灾害具有非线性、极差大以及多峰值等特点.为使电网及时获取预警信息,提出一种基于注意力机制的CNN-LSTM-XGBoost台风暴雨电力气象混合预测模型.首先,利用基于注意力机制的卷积神经网络(CNN)辨识关键台风暴雨灾害特征;然后,利用长短期记忆网络(LSTM)训练时间序列预测模型以挖掘台风暴雨时序特征,使用极限梯度提升算法替换模型输出层以缓解过拟合问题;最后,以2023年台风泰利为例验证所提方法的有效性.算例分析表明,所提模型具有较高的准确性,对预测精度的提升可达40.84%以上.
Attention Mechanism Based CNN-LSTM-XGBoost Electric Power Meteorological Hybrid Forecasting Model of Typhoon Rainstorm
Major disasters such as typhoon rainstorm disasters have the characteristics of nonlinear,large range and multi-peak.To make the power grid obtain early warning information in time,the paper proposes a attention mechanism based CNN-LSTM-XGBoost electric power meteorological hybrid forecasting model of the typhoon rainstorm.Firstly,the attention mechanism based convolutional neural network is used to extract the key disaster characteristics of the typhoon rainstorm.Then the long short-term memory network(LSTM)is utilized to train time series prediction model and mine the time series feature information.To solve the problem of overfitting,the extreme gradient boosting algorithm is applied to replace model's output layer.Finally,typhoon Talim in 2023 is taken as a case study to verify the effectiveness of the proposed method.The results show that the proposed model has better performance,and its prediction accuracy is improved by more than 40.84%.

typhoon disasterrainstorm forecastneural networkhybrid modelpower grid early warning

侯慧、吴文杰、魏瑞增、何浣、王磊、李正天、林湘宁

展开 >

武汉理工大学自动化学院,湖北武汉 430070

广东省电力装备可靠性重点实验室,广东广州 510080

华中科技大学电气与电子工程学院,湖北武汉 430074

台风灾害 暴雨预测 神经网络 混合模型 电网预警

国家自然科学基金资助项目中国南方电网有限责任公司科技项目

U22B20106GDKJXM20231426

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(10)
  • 18