首页|基于STSGCN和VNBA的电力系统TSCOPF模型研究

基于STSGCN和VNBA的电力系统TSCOPF模型研究

扫码查看
为保证电力系统运行的安全性和经济性,针对故障后电力系统的暂态失稳问题,提出基于时空同步图卷积网络(STSGCN)和可变邻域蝙蝠算法(VNBA)的电力系统暂态稳定约束最优潮流(TSCOPF)模型.首先,通过STSGCN确立系统输入特征与构建的暂态稳定系数间的联系;然后,利用基于全特征集的STSGCN实现高精度的暂态稳定评估,将基于可控特征集的STSGCN作为暂态稳定约束嵌入TSCOPF模型;最后,采用VNBA对TSCOPF模型进行优化求解.算例分析表明,所提方法能够兼顾电力系统安全性与经济性,有效提升系统在故障情景下的暂态稳定.
Transient Stability Constrained Optimal Power Flow Model for Power Systems Based on STSGCN and VNBA
To ensure the security and economy of power system operation,the paper proposes the transient stability constrained optimal power flow(TSCOPF)model for power systems based on spatio-temporal synchronous graph convolutional networks(STSGCN)and variable neighborhood bat algorithm(VNBA)for the transient instability problem in the power systems after a fault.Firstly,the associations between system input characteristics and constructed transient stability indexes are built through STSGCN.Then the full feature set based STSGCN is utilized to achieve high-precision transient stability assessment,and the controllable feature set based STSGCN is embedded into the TSCOPF model as the transient stability constraint.Finally,the VNBA is used to solve the TSCOPF model optimally.The example analysis demonstrates that the proposed method can consider both the security and economy of the power systems,and effectively enhances the transient stability of the system in fault scenarios.

TSCOPFSTSGCNVNBA

刘颂凯、刘龙成、杨超、李彦彰、张磊、王秋杰、刘旭

展开 >

三峡大学 电气与新能源学院,湖北 宜昌 443002

新能源微电网湖北省协同创新中心,湖北 宜昌 443002

国网武汉供电公司,湖北 武汉 430000

国网浙江超高压公司,浙江 杭州 311121

展开 >

TSCOPF STSGCN VNBA

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(12)