首页|基于二次分解和ATT-CNN-LSTM-MLR组合模型的短期电价预测方法

基于二次分解和ATT-CNN-LSTM-MLR组合模型的短期电价预测方法

扫码查看
针对电力现货市场价格的强波动性,电价存在跳跃点、尖峰点的特点,提出基于二次分解和注意力机制(ATT)-卷积神经网络(CNN)-长短时记忆神经网络(LSTM)-多元线性回归(MLR)组合模型的短期电价预测方法.首先,为深度挖掘电价跳跃点和尖峰点处的特征,采用自适应噪声完备集合经验模态分解和变分模态分解将原始电价序列分解为一系列模态分量;其次,针对分解后的低频与高频子序列,分别建立MLR浅学习模型和ATT-CNN-LSTM组合模型实现多频预测,重构各子模型输出得到最终预测结果;最后,采用具有强波动性特征的欧洲电力交易所数据进行算例分析,验证了模型的有效性.
Short-term Electricity Price Forecasting Method Based on Quadratic Decomposition and ATT-CNN-LSTM-MLR Combined Model
Targeting the problem of the strong volatility of electricity spot market prices and the existence of jump points and peak points in electricity prices,the paper proposes a short-term electricity price prediction model based on a combination of quadratic decomposition and attention mechanism(ATT)-convolutional neural network(CNN)-long short-term memory neural network(LSTM)-multiple linear regression(MLR).Firstly,the adaptive noise complete set empirical mode decomposition and variational mode decomposition are used to decompose the original electricity price sequence into a series of modal components,exploring the features of the jump points and peak points in the electricity prices.Secondly,for the decomposed low-frequency and high-frequency subsequences,MLR shallow learning model and ATT-CNN-LSTM combined model are respectively established to achieve multi frequency prediction,and the output of each sub model is reconstructed to obtain the final prediction results.Finally,a case study is conducted using data with strong volatility characteristics from European Electricity Exchange to validate the effectiveness of the model.

electricity price forecastattention mechanismcomplete ensemble empirical mode decomposition with adaptive noisevariational mode decompositionmulti-frequency combination

张玉敏、孙猛、吉兴全、叶平峰、张晓峰

展开 >

山东科技大学 电气与自动化工程学院,山东 青岛 266590

山东科技大学 储能技术学院,山东 青岛 266590

国网山东省电力公司信息通信公司,山东 济南 250013

电价预测 注意力机制 完全自适应噪声完备集合经验模态分解 变分模态分解 多频组合

2024

智慧电力
陕西省电力公司

智慧电力

CSTPCD北大核心
影响因子:0.831
ISSN:1673-7598
年,卷(期):2024.52(12)