首页|深度学习方法在地震事件分类中的应用及可解释性研究

深度学习方法在地震事件分类中的应用及可解释性研究

Application and interpretability of deep learning methods in seismic event classification

扫码查看
采用2016-2020年福建台网所记录的爆破和天然地震事件以及背景噪声数据集,使用CNN模型、Inception10模型、ResNet18模型和Vgg16模型4种深度学习网络模型进行分类研究.针对深度学习网络模型的"黑盒"问题,将梯度类激活映射(Gradient-weighted Class Activation Map-ping,Grad-CAM)算法引入这4种分类模型中,得到每个模型的可视化图.通过可视化图可以直观地看出模型在做出分类决策时对于不同波形特征的依赖权重,为模型的可解释性提供依据,进而提高模型的可信度.通过对模型的可视化图分析得出,分类效果更好的CNN模型和Vgg16模型在做出决策时更依赖于地震波形的震相特征,对于震前和震后的波段关注较小;而ResNet18模型和Inception10模型对于震相特征的关注不够敏锐.通过Grad-CAM算法对模型进行可视化分析得到的结果能够很好地反映模型的分类效果,对于改进和选择合适的分类模型具有重要意义.

路晓辰、杨立明、杨兴悦、王祖东、王维欢、高永国、尹欣欣

展开 >

中国地震局兰州地震研究所,甘肃兰州730000

甘肃省地震局,甘肃兰州730000

青海省地震局,青海西宁810000

可解释性 Grad-CAM算法 爆破事件分类 深度学习

中国地震局地震预测研究所基本科研业务专项甘肃省科技计划甘肃省科技计划

2020IESLZ0121JR7RA79021YF5FA031

2023

地震工程学报
中国地震局兰州地震研究所,中国地震学会,清华大学,中国土木工程学会

地震工程学报

CSTPCDCSCD北大核心
影响因子:1.191
ISSN:1000-0844
年,卷(期):2023.45(2)
  • 11