首页|基于时频分析与深度学习的结构震后损伤评估

基于时频分析与深度学习的结构震后损伤评估

扫码查看
为评估地震后钢筋混凝土(RC)框架结构的损伤状态,提高损伤评估的效率和精度,文章提出一种基于时频分析和一维卷积神经网络(1D-CNN)的地震损伤评估方法.首先利用增量动力时程分析对一个6层RC框架结构进行地震损伤模拟,并根据最大层间位移角对加速度信号进行损伤程度的标定,以此来获取数据样本,随后应用五种不同的时频分析方法对原始信号进行处理;然后建立基于1D-CNN的地震损伤评估模型,并利用贝叶斯优化算法寻找模型中的最优参数组合;最后评估所提出模型方法在噪声情况下的泛化能力.研究结果表明:五种时频分析方法中,小波散射变换方法的准确率最高,达92.5%,且计算速度也最快,仅需144 s;另外在噪声下该方法仍可以保持较高的损伤评估准确率,具有较好的鲁棒性和泛化能力.
Structural damage assessment after earthquakes using time-frequency analysis and deep learning
To assess the damage state of reinforced concrete(RC)frame structures after earth-quakes and improve the efficiency and accuracy of damage assessment,this study proposes an earthquake damage assessment method based on time-frequency analysis and one-dimensional convolutional neural network(1D-CNN).First,the earthquake damage to a six-story RC frame structure was simulated using incremental dynamic analysis.Based on the maximum story drift ratio,the degree of damage was calibrated to obtain data samples.Second,four different time-frequency analysis methods were applied to process the original signals.Third,an earthquake damage assessment model based on a 1D-CNN was established,and the optimal parameter com-bination in the model was determined using the Bayesian optimization algorithm.Finally,the generalization ability of the proposed model under noise was evaluated.The results show that among five time-frequency analysis methods,the wavelet-scattering transform method has the highest accuracy,reaching 92.5%,and the fastest calculation speed,taking only 144 s.In addi-tion,the proposed method can maintain a high level of damage assessment accuracy under noise conditions,indicating good robustness and generalization ability.

seismic damage assessmentRC frame structuretime-frequency analysisone-dimensional convolutional neural networkBayesian optimization

周荣环、康帅、王自法、靳满

展开 >

河南大学土木建筑学院,河南开封 475004

中震科建(广东)防灾减灾研究院有限公司,广东韶关 512000

地震损伤评估 RC框架结构 时频分析 一维卷积神经网络 贝叶斯优化

国家自然科学基金面上项目河南省高等学校重点科研项目

5197863422A560009

2024

地震工程学报
中国地震局兰州地震研究所,中国地震学会,清华大学,中国土木工程学会

地震工程学报

CSTPCD北大核心
影响因子:1.191
ISSN:1000-0844
年,卷(期):2024.46(1)
  • 6