首页|融合注意力机制卷积神经网络的扬声器异常声分类

融合注意力机制卷积神经网络的扬声器异常声分类

扫码查看
针对扬声器异常声非线性、非平稳且易受外部噪声干扰,以及因特征冗余而导致扬声器异常声识别率偏低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和一维卷积循环注意力网络(1DCNN-BiLSTM-Attention)相结合的扬声器异常声分类方法.首先,采集不同类型异常声信号,采用VMD对异常声信号进行分解并提取扬声器异常声特征,构建标签化的初始数据;其次,将特征数据输入至1DCNN-BiLSTM网络中进行初始化特征提取,利用注意力机制自适应优化网络对异常声特征的学习权重,提升网络对特征鉴别能力,并优化Dropout抑制网络在训练过程中存在的过拟合问题,构成1DCNN-BiLSTM-Attention分类网络;最后,将所提方法应用于扬声器异常声分类中.实验结果表明:该方法可以有效提取到扬声器异常声中的关键特征,平均分类准确率为99.17%,与VGG16、RF和DCNN相比,其准确率分别提高了 13.14%、0.56%,12.34%.
Diagnosis of abnormal sound in loudspeakers by integrated attention mechanism convolutional neural network
In response to the problem of the non-linear,non-stationary nature of speaker abnor-mal sound,as well as their susceptibility to external noise interference,and the low recognition rates,a speaker abnormal sound classification method with variational mode decomposition(VMD)and ID convolutional recurrent attention network(1DCNN-BiLSTM-Attention)was pro-posed.Firstly,different types of abnormal sound signals were collected,and VMD was used to decompose the signals and extract the features of speaker abnormal sound,constructing labeled initial data.Secondly,the feature data was input into the 1DCNN-BiLSTM network for initial feature extraction.The attention mechanism was employed to adaptively optimize the network's learning weights for abnormal sound features,enhancing the networks discriminative capability.Additionally,dropout was optimized to suppress overfitting during the training process,resulting in the construction of the 1DCNN-BiLSTM-Attention classification network.Finally,the pro-posed method was applied to speaker abnormal sound classification.The experimental results demonstrate that this method effectively extracts key features from speaker abnormal sounds,with an average accuracy of 99.17%.Compared to VGG16,RF,and DCNN,the accuracy has been improved by 13.14%,0.56%,and 12.34%respectively.

abnormal sound classificationvariational mode decompositionconvolutional neural networkattentional mechanis

周静雷、王晓明、李丽敏

展开 >

西安工程大学电子信息学院,陕西西安 710048

异常声分类 变分模态分解 卷积神经网络 注意力机制

国家自然科学基金陕西省技术创新引导专项陕西省自然科学基础研究计划

622033442020CGXNX-0092022JM-322

2024

西安工程大学学报
西安工程大学

西安工程大学学报

CSTPCD
影响因子:0.473
ISSN:1674-649X
年,卷(期):2024.38(2)
  • 26