首页|考虑子单元数量与起始位置的全覆盖路径规划

考虑子单元数量与起始位置的全覆盖路径规划

扫码查看
移动机器人的覆盖作业任务正朝着大面积和智能化方向发展,对全覆盖路径规划的覆盖效率与环境适应性提出迫切需求.为解决传统的牛耕单元分解法在复杂地图中适应性不足的问题,并提高覆盖效率,给出一种全覆盖路径规划方法.首先,在牛耕单元分解法的基础上,提出面积降序遍历与单调多边形判断的策略对子单元进行合并,减少约一半的子单元数量.最后,通过建立子单元起始位置与终止位置的映射关系,采用遗传算法优化子单元起始位置的选择和全局访问顺序.研究结果表明:1)文中算法在处理长宽为1 300像素的地图时,能够在10 s内得到计算结果,并且相较于牛耕法、神经网络法和等高线法,计算时间随地图面积的增长率更小;2)相较于牛耕法、等高线法、神经网络法和能量最优法,文中算法的机器人总作业时间减少5.4%~47.0%,无效作业时间减少5.8%~29.2%;3)文中算法在1 800张测试地图的平均覆盖率达到99.91%;4)统计检验进一步验证文中算法具有显著覆盖效率优势.
Coverage path planning considering the cell number and starting position
The coverage tasks of mobile robots are evolving towards large-scale and intelligent di-rections,demanding urgent requirements for the coverage efficiency and environmental adaptabil-ity of coverage path planning.To address the inadequate adaptability of the traditional boustro-phedon cellular decomposition in complex maps and to improve coverage efficiency,a complete coverage path planning method is proposed.Firstly,based on the boustrophedon cellular decom-position method,a strategy of area-descending traversal and monotone polygon judgment was proposed to merge cells,reducing approximately half of the cell quantity.Finally,by establis-hing the mapping relationship between the starting and ending positions of cells,a genetic algo-rithm was employed to optimize the selection of cells'starting positions and the global access or-der.The research results show that:1)when processing maps with dimensions of 1 300 pixels,the algorithm in this paper can obtain calculation results within 10 s,and compared with the boustrophedon method,neural network method,and contour line method,the growth rate of calculation time is smaller with the increase of map area;2)compared with the boustrophedon method,contour line method,neural network method,and energy-optimal method,the total op-eration time of robots in this paper is reduced by 5.4%to 47.0%,and the ineffective operation time is reduced by 5.8%to 29.2%;3)the average coverage rate of this algorithm on 1 800 test maps reaches 99.91%;4)the tests further confirm the significant coverage efficiency advantages of the algorithm proposed in this paper.

coverage path planningcellular decomposition methodgenetic algorithmmonoton-ic polygonstarting position optimization

马铭言、黄思荣、邓仁辉、吴蕾、何力

展开 >

广东工业大学机电工程学院,广东广州 510006

工业和信息化部电子第五研究所,广东广州 511370

南方科技大学电子与电气工程系,广东深圳 518055

全覆盖路径规划 单元分解法 遗传算法 单调多边形 起始位置优化

2024

西安工程大学学报
西安工程大学

西安工程大学学报

CSTPCD
影响因子:0.473
ISSN:1674-649X
年,卷(期):2024.38(4)