首页|多传感器智能车辆的编队运动自适应控制

多传感器智能车辆的编队运动自适应控制

扫码查看
面向具备多传感器的车辆编队问题,文中主要研究基于预定运动轨迹的自适应运动算法.首先,利用Kalman滤波处理多个传感器的数据信息得到最优数据融合估计,以获取车辆编队的最优位置信息.然后,通过车辆之间交换位置估计信息得到下一步车辆编队运动规划.分别考虑了无领导车的固定双向通信集群移动和有领导车的固定单向通信集群移动2种车辆编队运动,提出的方法不同于仅控制编队车辆向目的地移动的情况,而是通过车辆与相邻车辆节点交换位置信息,使得车辆编队可沿着预定的轨迹向终点位置移动.为了满足车辆之间维持理想距离的实际需求,分别引入使队列沿预定路径运动的牵引力和拓扑力2种虚拟力模型,其中牵引力主要引导车辆沿预定路径到达目的地,而拓扑力主要维持各跟随车辆之间的连接拓扑.仿真结果表明:所提方法相较于已有方法能有效缩短车辆安全距离、提升道路利用率,具有良好的适用性.
Adaptive control for vehicle formation movement with multiple sensors
The adaptive motion algorithm based on predetermined motion trajectories is studied in this paper,addressing the problem of vehicle formation with multiple sensors.Firstly,optimal da-ta fusion estimation of sensor data from multiple sensors was obtained through processing using Kalman filtering,acquiring the optimal position information of the vehicle formation.Then,the next step of vehicle formation motion planning was obtained through the exchange of position es-timation information between vehicles.Two types of vehicle formation motion were considered:fixed bidirectional communication cluster movement without a leader vehicle and fixed unidirec-tional communication cluster movement with a leader vehicle.The proposed method,unlike situa-tions where only the movement of formation vehicles towards the destination was controlled,ena-bled the vehicle formation to move towards the endpoint along the predetermined trajectory through the exchange of position information between adjacent vehicle nodes.To meet the practi-cal requirement of maintaining an ideal distance between vehicles,two virtual force models,name-ly traction force and topological force were introduced.Traction force primarily guides vehicles a-long the predetermined path to reach the destination,while topological force mainly maintains the connection topology among following vehicles.Simulation results indicate that the proposed method,compared to existing methods,effectively shortens the safe distance between vehicles and improves road utilization efficiency,demonstrating the good applicability.

information fusionoptimal information fusion Kalman filtervehicle formationa-daptive control

唐明珠、相国梁、时宏伟、郭胜辉

展开 >

苏州科技大学电子与信息工程学院,江苏苏州 215009

连云港三新供电服务有限公司,江苏连云港 222000

信息融合 最优信息融合卡尔曼滤波 车辆编队 自适应控制

2024

西安工程大学学报
西安工程大学

西安工程大学学报

CSTPCD
影响因子:0.473
ISSN:1674-649X
年,卷(期):2024.38(4)