首页|改进蚁群算法的机器人路径规划

改进蚁群算法的机器人路径规划

扫码查看
针对蚁群算法在求解机器人路径规划时存在收敛速度慢、容易陷入局部最优等问题,提出了一种改进的蚁群算法.首先,建立了一种趋向启发函数,使得待选节点更趋于起点和终点的连线,对于避免局部最优起到一定的作用,在此基础上引入柯西分布函数,不断削弱趋向启发函数的影响效果,提高了算法后期的全局搜索能力;其次,改进了距离启发函数,综合考虑待选节点和起点以及待选节点和终点之间的距离关系,加快了算法的收敛速度;再次,提出了一种根据迭代次数动态调整的信息素挥发因子,不断减小信息素挥发因子直至合适的大小,增强了全局搜索能力;最后,采用三次B样条曲线进行路径平滑处理,平滑了路径,缩短了路径长度.仿真结果表明:改进后的算法相比传统算法,收敛时间减小了3%,最短路径长度缩短了12%,收敛迭代次数减少了76%.改进后的算法较传统算法最小路径长度更短,收敛速度更快,路径也更加平滑,证明了改进后的算法在解决收敛速度慢、容易陷入局部最优等问题上的有效性.
Robot path planning based on improved ant colony optimization
Aimed at the problems of ant colony algorithm in solving robot path planning,such as slow convergence speed and tending to fall into local optimization,an improved ant colony optimi-zation was proposed.Firstly,a trend heuristic function was established,makeing the nodes to be selected closer to the line between the starting point and the end point,which plays a certain role in avoiding the local optimization,and the Cauchy distribution function was introduced on the ba-sis of this function,which constantly weakens the influence of the trend heuristic function,and improves the global search ability of the algorithm in the later stage.Secondly,the distance heu-ristic function was improved to speed up the convergence of the algorithm by integrating the dis-tance relationship between the nodes to be selected and the starting point as well as between the nodes to be selected and the end point.Then,a pheromone volatilization factor that is dynamically adjusted according to the number of iterations was proposed,and the pheromone volatilization fac-tor is continuously reduced until the appropriate size,which enhances the global search ability.Fi-nally,a cubic B-spline curve was used for the path smoothing process,which smoothes the paths and shortens the length of the paths.Simulation results show that compared with the traditional algorithm,the improved algorithm reduces the convergence time by 3%,the shortest path length by 12%,and the number of convergence iterations by 76%.The improved algorithm has a shorter minimum path length,faster convergence speed and smoother paths than the traditional algo-rithm;it proves the effectiveness of the improved algorithm in solving the problems of slow con-vergence speed and easy to fall into local optimization.

robotspath planningant colony optimizatonheuristic functioncubic B-spline curve

薛翔、朱其新、朱永红

展开 >

苏州科技大学 电子与信息工程学院,江苏 苏州 215009

苏州科技大学 机械工程学院,江苏 苏州 215009

江苏省智能共融机器人工程技术中心,江苏 苏州 215009

苏州市共融机器人重点实验室,江苏 苏州 215009

景德镇陶瓷大学 机电工程学院,江西 景德镇 333001

展开 >

机器人 路径规划 蚁群算法 启发函数 三次B样条曲线

2024

西安工程大学学报
西安工程大学

西安工程大学学报

CSTPCD
影响因子:0.473
ISSN:1674-649X
年,卷(期):2024.38(6)