首页|基于水下运动目标亮点图像模型的数据增强

基于水下运动目标亮点图像模型的数据增强

扫码查看
随着水声对抗技术的发展,深度学习技术被应用于水下目标的回波几何特征识别,但面临着样本稀缺问题。改进水下目标亮点模型,建立主动声呐目标回波信息方程,结合二者并进行空间位置的有规律变化,构成水下运动目标的亮点图像模型。以水下航行体为例详细介绍了模型的构建过程,并建立4种典型尺度诱饵的亮点图像模型实例,生成5种目标的多空间状态数据样本。设计eHasNet-5卷积分类网络,利用生成数据进行网络训练、验证和测试。试验实测数据测试表明,目标亮点图像生成模型为深度学习在主动声呐目标识别领域的应用提供了一种新的数据增强方法,生成数据训练的网络具备二维尺度目标分类能力。
Data augmentation based on highlight image models of underwater maneuvering target
With the development of underwater acoustic countermeasure technology,deep learning is applied to recognize echo geometry features of underwater targets,but it faces the problem of sample scarcity.In this paper,we improved the underwater target highlight model,and established the target echo information equation of active sonar.By changing the spatial positions of target and sonar regularly,we performed the highlight image models of underwater maneuvering targets.Taking an underwater vehicle as an example,the model construction process was introduced in detail,and highlight image models of four typical acoustic scale decoys were also established,and five multi-space state highlight image data samples were generated.The eHasNet-5 convolutional classification net-work was designed,and the network was trained,verified and tested with the generated data.Finally,the experi-mental data test shows that the target highlight image generation models provide a new data augmentation method for the application of deep learning in active sonar target recognition,and the trained network by generated data has the ability to classify two-dimensional objects.

highlight imagedata augmentationtarget classificationdeep learning

刘晓春、杨云川、胡友峰、杨向锋、李永胜、肖霖

展开 >

中国船舶集团公司第705研究所,陕西西安 710077

中国船舶集团公司第705研究所昆明分部,云南昆明 650102

亮点图像 数据增强 目标分类 深度学习

2024

西北工业大学学报
西北工业大学

西北工业大学学报

CSTPCD北大核心
影响因子:0.496
ISSN:1000-2758
年,卷(期):2024.42(3)