首页|"数据要素×"背景下大宗商品价格风险监管

"数据要素×"背景下大宗商品价格风险监管

扫码查看
随着数字经济时代的到来,大宗商品市场面临诸如价格波动大、供应链不确定性等风险.为研究"数据要素×"背景下大宗商品价格风险监管问题,对大宗商品的关键地位和政策举措、"数据要素×"对大宗商品市场的塑造力、大宗商品交易风险的挑战和前景展望、大宗商品价格风险监测的紧迫性进行分析.研究发现,数据分析和人工智能等新兴技术正在彻底改变中国大宗商品市场,大宗商品面临数据采集、价格数据标签需求、知识图谱构建、风险动态预警等四大核心问题.研究表明,应借助深度学习对多源异构数据进行采集、借助知识元的标引和集成技术建立数据标签、借助数据挖掘等构建知识图谱、借助分级校准建立风险动态预警系统,提高投资者和决策者在大宗商品市场中的风险应对能力.
Commodity price risk supervision in the context of "data element×"
With the advent of the era of digital economy,the commodity market faces risks such as significant price fluctuations and supply chain uncertainties.To examine the commodity price risk supervision challenges in the context of"data element×",this paper analyzes the pivotal role and policy measures concerning commodities,the influential force of"data element×"on the commodity market,the challenges and prospects related to commodity trading risks,and the pressing need for commodity price risk supervision.The study reveals that emerging technologies such as data analysis and artificial intelligence are reshaping China's commodity market entirely.Commodities encounter four central issues:data collection,requirements for price data labeling,construction of knowledge maps,and dynamic risk alerts.Research suggests leveraging deep learning for gathering multi-source heterogeneous data,employing knowledge element indexing and integration technology to establish data labels,utilizing data mining for knowledge map construction,and implementing hierarchical calibration to establish a dynamic risk alert system.These measures aim to enhance the risk response capabilities of investors and decision-makers in commodity markets.

"data element×"commoditydigital economyrisk supervisionmachine learning

徐亮、文婧、朱禹臣、唐显博

展开 >

西南财经大学 工商管理学院,四川 成都 611130

澳门城市大学 商学院,澳门 999078

悉尼大学 文学与社会科学学院,亚新南威尔士州 悉尼 2006

"数据要素×" 大宗商品 数字经济 风险监测 机器学习

国家自然科学基金大商所"百校万才"工程研究项目

71971171DECYJ202301

2024

长安大学学报(社会科学版)
长安大学

长安大学学报(社会科学版)

CHSSCD
影响因子:0.261
ISSN:1671-6248
年,卷(期):2024.26(2)
  • 41