首页|结合非局部空间信息和KL信息的鲁棒FCM算法

结合非局部空间信息和KL信息的鲁棒FCM算法

扫码查看
针对传统模糊C均值(Fuzzy C-Means,FCM)聚类算法对噪声敏感的问题,提出一种结合非局部空间信息和KL信息的鲁棒FCM算法.首先,将灰度信息与非局部空间信息相融合,用于增强算法对噪声的鲁棒性;其次,在目标函数中引入KL信息,以便减少分割的模糊性.在密度为5%的混合噪声条件下,合成图像和自然图像的实验结果表明,该文算法的分割精度较高、鲁棒性较强,能较好地分割噪声图像.
A Robust FCM Algorithm Combining Non-Local Spatial Information and KL Information
Aiming at the problem that traditional Fuzzy C-Means(FCM)clustering algorithm is sensitive to noise,a robust FCM algorithm combining non-local spatial information and KL information is proposed.Firstly,the gray-scale information is fused with non-local spatial information to enhance the robustness of the algorithm against noise.Secondly,KL information is introduced into the objective function to reduce the ambiguity of segmentation.Under the mixed noise condition of 5%density,the experimental results of synthesized image and natural image show that the algorithm has high segmentation accuracy and robustness,and can divide noise image better.

Fuzzy C-MeansImage segmentationNon-local spatial informationKL information

彭家磊、黄成泉、陈阳、雷欢、覃小素

展开 >

贵州民族大学数据科学与信息工程学院,贵州 贵阳 550025

贵州民族大学工程技术人才实践训练中心,贵州贵阳 550025

模糊C均值 图像分割 非局部空间信息 KL信息

国家自然科学基金

62062024

2024

西北民族大学学报(自然科学版)
西北民族大学

西北民族大学学报(自然科学版)

影响因子:0.39
ISSN:1009-2102
年,卷(期):2024.45(1)
  • 13