首页|基于WT-kNN的沥青混凝土心墙坝渗流监测数据异常检测

基于WT-kNN的沥青混凝土心墙坝渗流监测数据异常检测

扫码查看
安全监测数据的质量,对沥青混凝土心墙坝安全状况分析具有重要意义.时间效应导致的趋势性问题是渗流监测数据异常检测的难点.模态分解方法能较好地对时间序列的趋势项进行分离,进而识别处异常信号.但是,土石坝渗流监测数据中的异常值和真实信号往往存在模态混叠.为了解决上述问题,通过引入了小波变换结合局部kNN加权回归(WT-kNN)异常检测方法,使用连续小波变换分离趋势项,通过局部kNN加权回归进一步对小波变换的检测结果进行筛选,提高模型的异常检测准确率.工程应用结果表明:对于粗差占比2.5%~10%的监测序列,WT-kNN的召回率均高于95%,误判率低于5%;该模型与WT-MAD方法和SSA-DBSCAN方法对比实验验证了WT-kNN的有效性和优越性.敏感性分析结果表明,提出模型对异常值数量占总数据量比例和异常值波动范围大小敏感性低,可为后续监测数据分析处理及预测预警建立基础.
Anomaly Detection of Seepage Monitoring Data of Asphalt Concrete Core Wall Dam based on WT-kNN
The quality of safety monitoring data is of significant importance for the analysis of the safety status of asphalt concrete core wall dam.Trend problems caused by time effects are the difficulties in detecting anomalies in seepage monitoring data.Modal decomposition methods can ef-fectively separate the trend component of time series and then identify abnormal signals.However,in the seepage monitoring data of earth-rock dams,modal aliasing of anomalies and real signals often exists.To solve these problems,the Wavelet Transform combined with local kNN weigh-ted regression(WT-kNN)anomaly detection method is introduced.In the proposed method,continuous wavelet transform is used to separate trend items,after which the detection results of wavelet transform are further scrutinized by the salocal kNN weighted regression,improving the accuracy of the model's anomaly detection.The results of engineering instance applications show that the recall rate of WT-kNN for monitoring se-quences with a gross error ratio of 2.5%~10%is more than 95%,and the misjudgment rate is less than 5%.The model and the WT-MAD method and the SSA-DBSCAN method comparative experiments have verified the effectiveness and superiority of WT-kNN.Sensitivity analysis re-sults show that the proposed model has low sensitivity to the proportion of the number of anomalies to the total data and the size of the anomaly fluctuation range,which can establish a basis for subsequent monitoring data analysis,processing,and early warning.

wavelet transformlocal K-nearest neighbor algorithmdam safety monitoringanomaly detection

毛建刚、阿尔娜古丽·艾买提、颜志光、廖攀

展开 >

新疆水利水电科学研究院,乌鲁木齐 830049

博河流域管理处,新疆 博乐 833400

新疆农业大学 水利与土木工程学院,乌鲁木齐 830052

小波变换 局部K近邻算法 大坝安全监测 异常检测

2023年新疆维吾尔自治区公益性科研院所基本科研业务经费资助项目

KY2023106

2024

西北水电
西北勘测设计研究院

西北水电

影响因子:0.388
ISSN:1006-2610
年,卷(期):2024.(3)