首页|基于自掘性多尺度识别的隧道洞口老滑坡复活变形预测

基于自掘性多尺度识别的隧道洞口老滑坡复活变形预测

扫码查看
为实现滑坡变形的高精度预测,以隧道洞口段复活滑坡为背景,利用变分模式分解开展滑坡变形数据的模态识别,并结合移动平均法进行趋势位移分析,将滑坡变形数据分解为趋势位移和随机位移;在滑坡变形数据分解基础上,利用猎食者算法和双向长短期记忆构建趋势位移预测模型,再在数据自掘性、多尺度分析基础上,通过BP神经网络或支持向量机实现随机位移预测。结果发现,受隧道洞口段施工影响,洞口滑坡变形特征显著,并由3个监测点的预测结果统计,得到预测结果的EMAP值介于2。01%~2。05%,Tt值介于162。45 ms~185。45 ms,预测模型不仅具有较优的预测精度,还具较强的稳定性,能有效掌握滑坡变形规律,为滑坡后续防治奠定了一定的理论基础。
Prediction of resurrection deformation of old landslides at tunnel entrances based on self excavation multi-scale recognition
In order to achieve high-precision prediction of landslide deformation,taking the revival of landslides in the tunnel entrance section as the background,the modal identification of landslide deformation data is carried out using variational mode decomposition,and the trend displacement is proposed by combining the moving average method.The landslide deformation data is decomposed into trend displacement and random displacement.Based on the decomposition of landslide deformation data,a trend displacement prediction model was constructed using the predator algorithm and bidirectional long short-term memory.Then,on the basis of data self excavation and multi-scale analysis,random displacement prediction was achieved through BP neural network or support vector machine.The results showed that the deformation characteristics of the landslide at the tunnel entrance was significant due to the construction of the tunnel entrance section,and the prediction results from three monitoring points were statistically analyzed.The EMAP value of the prediction results ranged from 2.01%to 2.05%,and the Tt value ranged from 162.45 ms to 185.45 ms,which not only had excellent prediction accuracy,but also had strong stability,and could effectively grasp the deformation law of the landslide,laying a certain theoretical foundation for subsequent landslide prevention and control.

landslidedata decompositiondecomposition of variational patternsdeformation prediction

翟会君、朱涛、翟亚锋

展开 >

河南省地质矿产勘查开发局第四地质勘查院,河南 郑州 450000

滑坡 数据分解 变分模式分解 变形预测

2025

西北师范大学学报(自然科学版)
西北师范大学

西北师范大学学报(自然科学版)

影响因子:0.463
ISSN:1001-988X
年,卷(期):2025.61(1)