首页|基于改进多全卷积网络(MFCN)的排球动作识别技术研究

基于改进多全卷积网络(MFCN)的排球动作识别技术研究

扫码查看
针对排球运动群体动作识别精度差、识别率低的问题,提出了一种智能化的排球动作识别技术.该技术采用多全卷积网络(multi fully convolutional networks,MFCN)提取运动者特征数据,并通过马尔可夫随机场修正模型;然后引入双重注意力模型强化特征关注,降低关键特征数据丢失问题.运用该模型对排球动作识别进行测试,结果表明:在单人排球动作识别中准确率为0.986,识别精度与收敛速度高;在群体排球动作识别中准确率为0.962,优于同类模型.研究模型在实际场景应用中具有出色的效果,可为体育动作的识别及视觉技术的改进提供技术参考.
Research on Volleyball Action Recognition Technology Based on Im-proved Multiple Fully Convolutional Networks(MFCN)
Aiming at the problems of poor recognition accuracy and low recognition rate of group actions in volleyball sports,an intelligent volleyball action recognition technology is proposed.The technology uses multi fully convolutional networks(MFCN)to extract the feature data of the antheletes and corrects the model through the Markov random field.Then,the dual attention model is introduced to strengthen the focus on feature attention and reduce the problem of key feature data loss.Using the model to test volleyball action recognition,the results show that the accuracy rate of single-person volleyball action recognition is 0.986,and the recognition accuracy and convergence speed are high.The accuracy rate of group volleyball action recognition is 0.962,which is better than that of similar models.The research model has ex-cellent results in practical scene applications,and can provide a technical reference for the recognition of sports actions and the improvement of visual technologies..

volleyball sportfully convolutional networkMarkov random fielddual attention model

安庆标

展开 >

安徽城市管理职业学院公共教学部,安徽 合肥 230011

排球运动 全卷积网络 马尔科夫随机场 双重注意力模型

2024

西昌学院学报(自然科学版)
西昌学院

西昌学院学报(自然科学版)

影响因子:0.307
ISSN:1673-1891
年,卷(期):2024.38(4)