首页|基于社交媒体文本挖掘的居民低碳出行意向分析

基于社交媒体文本挖掘的居民低碳出行意向分析

扫码查看
城市交通运输是碳减排的重要领域,其中城市居民出行碳排放占比达到了20%,低碳出行对缓解全球气候变化具有重要意义.了解居民对低碳出行的意向有助于推广该行为,社交媒体平台提供了大量有价值的信息,文章基于新浪微博中的低碳出行博文数据,采用BERT-BiLSTM模型、LDA主题模型的文本挖掘方法分析居民对低碳出行的行为意向和关注主题.结果表明:居民对低碳出行整体上持积极意向;地铁和公交最受欢迎;低碳出行意向是不同因素综合作用的结果;明星效应对低碳出行意向影响显著.研究结论将有助于低碳出行政策的完善.
Analysis of Residents'Low-Carbon Travel Intentions Based on Social Media Text Mining
Urban transportation is an important area for carbon reduction,and the proportion of carbon emissions from urban residents'travel has reached 20%.Low carbon travel is of great significance for mitigating global climate change.Understanding residents'behavioral intentions towards low-carbon travel helps in promoting such practices,and social media platforms provide a wealth of valuable information.This paper analyzes residents'behavioral intentions and focus themes regarding low-carbon travel using Sina Weibo posts data,employing text mining methods of BERT-BiLSTM model and the LDA topic model.The results indicate that residents generally have a positive intention towards low-carbon travel,subways and buses are the most popular options,low carbon travel intention is a comprehensive result of different factors,and the"celebrity effect"has a significant impact on low-carbon travel intentions.The conclusions of this study will aid in improving low-carbon travel policies.

low-carbon travelsocial media sentimenttext miningtopic analysis

叶贵、李长帆、李晋鹏、牛佳晨

展开 >

重庆大学管理科学与房地产学院

重庆城市科技学院

低碳出行 社交媒体情绪 文本挖掘 主题分析

国家社科基金重点项目中央高校基本科研业务费专项资金资助项目中央高校基本科研业务费专项资金资助项目重庆市教委科学技术研究项目

22AZD0992022CDJSKPY192023CDJSKJJ16KJZD-M202202501

2024

现代城市研究
南京城市科学研究会

现代城市研究

CSTPCDCHSSCD北大核心
影响因子:0.922
ISSN:1009-6000
年,卷(期):2024.(10)