首页|基于多源数据的中俄边境收缩城市建设用地格局演变机理研究——以牡丹江市为例

基于多源数据的中俄边境收缩城市建设用地格局演变机理研究——以牡丹江市为例

扫码查看
通过观测35年的遥感数据及其他多源数据,以5年为时间切片,采用近邻比率、核密度等空间统计分析方法,识别中俄边境地区重要的边贸城市牡丹江市城乡建设用地演变路径.通过空间统计法计算牡丹江市的收缩趋势及速度,并利用机器学习之梯度提升决策树(GBDT)分析边境贸易、交通基础设施、民生基础设施等多种因素对城乡建设用地格局的影响机理,文章证明了牡丹江市属于边境贸易影响下以陆路交通为主导的收缩型城市,阐释了中俄边境城市建设用地格局的演变机理,为该区域城市建设用地供给政策提供科学依据.
Examining the Mechanism Underlying the Evolution Pattern of Construction Land in Shrinking Cities on the Sino-Russian Border Based on Multi-Source Data:Evidence from Mudanjiang City
Using five-year cross-sections of remote sensing data and other multi-source data spanning 35 years,this study applied spatial statistical analysis methods,such as average nearest neighbor and kernel density,to trace the evolution trajectory of urban and rural construction land in Mudanjiang city,a key trade hub in the Sino-Russian border region.Using spatial statistical methods,we calculated the contraction trend and speed of Mudanjiang city.We then used Gradient Boosting Decision Tree(GBDT),a machine learning technique,to examine the influences of border trade,transportation infrastructure,and essential civil infrastructure on the development pattern of construction land.Based on these analyses,we substantiate that Mudanjiang city is a shrinking city primarily influenced by border trade and road transportation.Moreover,this study elucidates the evolution mechanism of the construction land pattern in Sino-Russian border cities,shedding light on the supply policy of construction land in the region.

multi-source dataurban and rural construction landspatial patternGradient Boosting Decision Treeborder crossing city

陈旭、房德威、孙珊、曹新宇

展开 >

东北林业大学园林学院

华中科技大学建筑与城市规划学院、湖北省城镇化工程技术研究中心

美国明尼苏达大学公共事务管理学院

多源数据 城乡建设用地 空间格局 梯度提升决策树 边境口岸城市

2024

现代城市研究
南京城市科学研究会

现代城市研究

CSTPCDCHSSCD北大核心
影响因子:0.922
ISSN:1009-6000
年,卷(期):2024.(11)