首页|基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法

基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法

扫码查看
电力负荷序列易受多重外部因素影响而呈现复杂性,不利于精准预测.为此,提出一种基于变分模态分解(variational mode decomposition,VMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short-term memory network,CNN-LSTM)相结合的短期电力负荷并行预测方法.先采用VMD将负荷数据分解为规律性强的各本征模态函数(intrinsic mode function,IMF)及残差;再将各分量分别输入到各自对应的CNN-LSTM混合预测网络,获得各初始预测值,并将该值与由气候、日期类型等组合得到的相关因素特征集相结合,进一步得出修正预测值;最终,叠加各分量修正预测值即得到完整预测结果.在实际负荷数据上做验证分析,结果表明,考虑相关外部因素特征集后日负荷预测平均相对误差均值可降低 2.18%.与几种常规负荷预测方法进行效果对比,验证了该方法的有效性和可行性.
Short-term Power Load Forecasting Method Based on Variational Modal Decomposition for Convolutional Long-short-term Memory Network
The power load sequence is complicated and easily affected by multiple external factors,making it difficult to anti-cipate with accuracy.A parallel forecasting method of short-term power load combining variational modal decomposition(VMD)and convolutional neural network and long short-term memory network(CNN-LSTM)is proposed to address the problem.Firstly,VMD is adopted to decompose the load data into various intrinsic mode functions(IMF)with strong regular-ity and residual error;Secondly,the obtained components are input into the corresponding CNN-LSTM hybrid prediction net-work to obtain each initial prediction value,and combine this value with the correlation factor feature set obtained by com-bining climate,date type,etc.to further obtain the revised pre-diction value;Finally,the revised prediction values of each component are superimposed to obtain a complete prediction result.According to the simulation on the actual load data,the average relative error of daily load forecasting can be reduced by 2.18%after taking into about the relevant external factor features set.In addition,compared with several conventional load forecasting methods,the effectiveness and feasibility of the proposed method can be verified.

short-term load forecastingvariational mode de-compositionconvolutional neural networklong short-term memory networkcorrelation factor feature set

黄睿、朱玲俐、高峰、王渝红、杨亚兰、熊小峰

展开 >

国网四川综合能源服务有限公司,四川省成都市 610021

四川大学电气工程学院,四川省成都市 610065

短期负荷预测 变分模态分解 卷积神经网络 长短期记忆网络 相关因素特征集

四川省科技计划资助项目

2021YFG0026

2024

现代电力
华北电力大学

现代电力

CSTPCD北大核心
影响因子:0.807
ISSN:1007-2322
年,卷(期):2024.41(1)
  • 24