首页|考虑风光出力不确定性及相关性的配电网规划方法

考虑风光出力不确定性及相关性的配电网规划方法

扫码查看
新能源在电力系统中的渗透率日益提高,大大增加了电网中的不确定因素,对配电网的规划运行和控制提出了更高的要求.配电网规划是电力系统安全稳定运行的重要基石,传统配电网规划中各参数都已确定,缺乏对不确定因素的适应性.因此,提出一种基于概率潮流的配电网规划方法,首先对配电网中的不确定因素定量建模,建立源荷出力模型,其次将风速、太阳辐射与用电负荷之间的相关性用秩相关系数矩阵表征,建立计及相关性的半不变量概率潮流计算方法,最后构建以规划成本最小为目标函数,以潮流平衡、馈线容量、节点电压、网架辐射型结构为约束条件的配电网规划模型,并通过改进惯性参数与引入变异操作对粒子群算法进行改进,利用改进后的算法求解规划模型.以33节点系统为例进行仿真,结果验证了该方法能够有效降低网损,减少网络规划费用.
Distribution Network Planning Method Considering Uncertainty and Correlation of Wind-photovoltaic Power Output
The growing penetration of new energy sources in the power system has significantly increases the uncertainties in the grid,asking for higher requirements for the planning,opera-tion and control of the distribution network.The distribution network planning is an important cornerstone for the safe and stable operation of the power system.The traditional distribu-tion network planning,in which all parameters are determined in advance,lacks adaptability to uncertainties.In view of this,we proposed a method for distribution network planning based on probabilistic power flow analysis.The source-load output model was firstly established according to the quantitative mod-eling of uncertainties in the distribution network by using our method.Secondly,we utilized the rank correlation coefficient matrix to characterize the correlation between wind speed,light intensity and load,and developed a semi-invariant probabilistic power flow calculation method with correlation taken into ac-count.Finally,with the objective function of reducing the com-prehensive cost,we constructed a distribution network plan-ning model with the constraints of feeder capacity,node voltage,tidal balance,and radial structure of the grid.And the particle swarm algorithm was improved by optimization of in-ertia parameters and incorporation of variational operations.The improved algorithm was employed to solve the planning model.Simulations were conducted taking a 33-node system as an instance,and the results confirms the effectiveness of our method in reducing network loss and network planning costs.

distribution network planninguncertaintycor-relationprobabilistic power flowparticle swarm optimiza-tion

张颖、艾欣

展开 >

华北电力大学电气与电子工程学院,北京市昌平区 102206

配电网规划 不确定性 相关性 概率潮流 粒子群算法

2024

现代电力
华北电力大学

现代电力

CSTPCD北大核心
影响因子:0.807
ISSN:1007-2322
年,卷(期):2024.41(2)
  • 1
  • 17