首页|基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识

基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识

扫码查看
为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法.首先,运用二阶聚类将台区不同的运行工况进行聚类,将相同工况的线损节点归并,然后将各类工况的节点线损数据导入RRCF算法中分析,通过删除和插入样本节点,并对插入节点后评判模型的复杂度进行计算,得到线损异常节点的评分值,进一步找出线损异常的节点.最终,通过有关实例验证所提方法的准确性与有效性.
Line Loss Anomaly Identification of Low-voltage-station Based on Second-order Clustering and Robust Random Cut Forest Algorithm
To accurately identify the abnormal line loss in the substation area and ensure the economic and stable operation of the distribution network,in allusion to the abnormal line loss in the substation area,based on second-order clustering and ro-bust random cut forest(abbr.RRCF)algorithm a method to de-tect the abnormal line loss in the substation area was proposed.Firstly,by means of second order clustering the different oper-ating conditions of the substation area were clustered and the line loss nodes under the same operating conditions were merged.Secondly,the nodal line loss data of all kinds of oper-ating conditions was led into RRCF algorithm to conduct the analysis.By means of deleting and inserting sample nodes and computing the complexity of the evaluation model after insert-ing nodes,the score values of abnormal line loss nodes could be obtained,and further the nodes with abnormal line loss could be found out.Finally,the effectiveness and accuracy of the pro-posed method are verified by related examples.

low-voltage substation arearegional second-order clusteringRRCF algorithmabnormal line loss

刘雄、夏向阳、刘定国、胡军华、黄瑞、李泽文、史子轶

展开 >

长沙理工大学电气与信息工程学院,湖南省长沙市 410114

国网湖南省电力有限公司,湖南省长沙市 410082

国网湖南省电力有限公司供电服务中心(计量中心),湖南省长沙市 410116

华东交通大学电气与自动化工程学院,江西省南昌市 330000

展开 >

低压台区 二阶聚类 RRCF算法 线损异常

国家自然科学基金

51977014

2024

现代电力
华北电力大学

现代电力

CSTPCD北大核心
影响因子:0.807
ISSN:1007-2322
年,卷(期):2024.41(3)
  • 21