首页|基于深度Q网络优化运行方式的风电场次同步振荡抑制策略

基于深度Q网络优化运行方式的风电场次同步振荡抑制策略

扫码查看
随着我国新型电力系统的不断发展,电力系统次同步振荡问题凸显,严重影响电网的安全稳定运行,而振荡阻尼水平对风电场次同步振荡具有重要影响.由于系统阻尼随电力系统运行方式变化,提出一种基于深度Q网络优化运行方式的风电场次同步振荡抑制策略.首先,通过时域仿真分析桨距角和串补电容对风电场次同步振荡阻尼的影响,在此基础上建立桨距角调整风机出力、并联电容调整线路串补的次同步振荡联合优化数学模型.其次,将深度Q网络算法应用于系统振荡阻尼优化求解问题,获得风电机组次同步振荡抑制优化策略,并与基于遗传算法求解的次同步振荡抑制结果对比.结果表明,该方法有效降低了振荡幅值,提升了系统的阻尼,验证了该方法的合理性和优越性.
Suppression Strategy of Subsynchronous Oscillation in Wind Farm Based on Deep Q-leaning Network Optimization Operation Mode
With the continuous development of new power systems in China,the problem of sub-synchronous oscillation in power systems has become prominent,seriously affecting the safe and stable operation of the power grid,and the level of os-cillation damping has an important impact on the sub-synchron-ous oscillation of wind farms.As the system damping changes with the operation mode of the power system,a sub-synchron-ous oscillation suppression strategy for wind farms based on the deep Q network optimization operation mode was proposed.Firstly,the influence of pitch angle and series compensation ca-pacitor on sub-synchronous oscillation damping of wind farms was analyzed by time domain simulation,and on this basis,a joint optimization mathematical model of sub-synchronous os-cillation with adjusting doubly fed induction generator(DFIG)output by pitch angle and adjusting line series compensation by parallel capacitor was established.Secondly,the deep Q-learn-ing network algorithm was applied to the optimization solution of system oscillation damping to obtain the optimization strategy of wind turbine sub-synchronous oscillation suppres-sion,and the results are compared with the results of sub-syn-chronous oscillation suppression based on the genetic al-gorithm,The results show that this method effectively reduces the oscillation amplitude and improves the damping of the sys-tem,which verifies the rationality and superiority of this meth-od.

doubly fed induction generator(DFIG)subsyn-chronous oscillationdeep Q-leaning networkdamping op-timizationoscillation suppression

陆文安、吴许晗、余一平、李兆伟、郄朝辉、李甘

展开 >

河海大学能源与电气学院,江苏省南京市 211100

南瑞集团(国网电力科学研究院)有限公司,江苏省南京市 211106

国网四川省电力公司,四川省成都市 610041

双馈风机 次同步振荡 深度Q网络 阻尼优化 振荡抑制

国家电网总部管理科技项目

5100-202040460A-0-0-00

2024

现代电力
华北电力大学

现代电力

CSTPCD北大核心
影响因子:0.807
ISSN:1007-2322
年,卷(期):2024.41(3)